cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A368469 a(n) is the sum of exponentially odd divisors of the n-th exponentially odd number.

Original entry on oeis.org

1, 3, 4, 6, 12, 8, 11, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 44, 42, 31, 30, 72, 32, 43, 48, 54, 48, 38, 60, 56, 66, 42, 96, 44, 72, 48, 72, 54, 93, 72, 88, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 132, 90, 112
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + (p^If[OddQ[e], e+2, e+1] - p)/(p^2 - 1); s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; s /@ Select[Range[200], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
    (* or *)
    f[p_, e_] := If[OddQ[e], 1 + (p^(e + 2) - p)/(p^2 - 1), 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 200], # > 0 &]
  • PARI
    lista(kmax) = {my(f, s, p, e); for(k = 1, kmax, f = factor(k); s = prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(e%2, 1 + (p^(e+2) - p)/(p^2 - 1), 0)); if(s > 0, print1(s, ", ")));}

Formula

a(n) = A033634(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^6/(1080*d^2)) * Product_{p prime} (1 - 1/p^2 - 2/p^4 + 2/p^5 + 1/p^6 - 1/p^7) = 0.98977643304712560492, and d = A065463 is the density of the exponentially odd numbers.
Showing 1-1 of 1 results.