cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368470 a(n) is the number of exponentially odd divisors of the largest unitary divisor of n that is an exponentially odd number (A268335).

This page as a plain text file.
%I A368470 #11 Dec 27 2023 01:21:36
%S A368470 1,2,2,1,2,4,2,3,1,4,2,2,2,4,4,1,2,2,2,2,4,4,2,6,1,4,3,2,2,8,2,4,4,4,
%T A368470 4,1,2,4,4,6,2,8,2,2,2,4,2,2,1,2,4,2,2,6,4,6,4,4,2,4,2,4,2,1,4,8,2,2,
%U A368470 4,8,2,3,2,4,2,2,4,8,2,2,1,4,2,4,4,4,4
%N A368470 a(n) is the number of exponentially odd divisors of the largest unitary divisor of n that is an exponentially odd number (A268335).
%H A368470 Amiram Eldar, <a href="/A368470/b368470.txt">Table of n, a(n) for n = 1..10000</a>
%H A368470 Vaclav Kotesovec, <a href="/A368470/a368470.jpg">Graph - the asymptotic ratio (100000 terms)</a>
%F A368470 a(n) = A033634(A350389(n)).
%F A368470 Multiplicative with a(p^e) = (e+3)/2 if e is odd and 1 otherwise.
%F A368470 a(n) >= 1, with equality if and only if n is a square (A000290).
%F A368470 a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).
%F A368470 Dirichlet g.f.: zeta(2*s)^2 * Product_{p prime} (1 + 2/p^s - 1/p^(2*s) - 1/p^(3*s)).
%F A368470 From _Vaclav Kotesovec_, Dec 26 2023: (Start)
%F A368470 Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + p^s/(1 + p^s)^2).
%F A368470 Let f(s) = Product_{p prime} (1 - 1/p^s + p^s/(1 + p^s)^2).
%F A368470 Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
%F A368470 f(1) = Product_{p prime} (1 - (2*p+1) / (p*(p+1)^2)) = 0.528940778823659679133966695786017426052491935740673837882972347697...,
%F A368470 f'(1) = f(1) * Sum_{p prime} (4*p^2 + 3*p + 1) * log(p) / (p^4 + 3*p^3 + p^2 - 2*p - 1) = f(1) * 1.36109933267802415215189866467122940932493907539386280428818...
%F A368470 and gamma is the Euler-Mascheroni constant A001620. (End)
%t A368470 f[p_, e_] := If[OddQ[e], (e + 3)/2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A368470 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, (f[i,2]+3)/2, 1));}
%Y A368470 Cf. A000005, A000290, A005117, A033634, A268335, A350389, A368471.
%K A368470 nonn,easy,mult
%O A368470 1,2
%A A368470 _Amiram Eldar_, Dec 26 2023