cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368471 a(n) is the sum of exponentially odd divisors of the largest unitary divisor of n that is an exponentially odd number (A268335).

This page as a plain text file.
%I A368471 #7 Dec 27 2023 01:21:13
%S A368471 1,3,4,1,6,12,8,11,1,18,12,4,14,24,24,1,18,3,20,6,32,36,24,44,1,42,31,
%T A368471 8,30,72,32,43,48,54,48,1,38,60,56,66,42,96,44,12,6,72,48,4,1,3,72,14,
%U A368471 54,93,72,88,80,90,60,24,62,96,8,1,84,144,68,18,96,144
%N A368471 a(n) is the sum of exponentially odd divisors of the largest unitary divisor of n that is an exponentially odd number (A268335).
%H A368471 Amiram Eldar, <a href="/A368471/b368471.txt">Table of n, a(n) for n = 1..10000</a>
%F A368471 a(n) = A033634(A350389(n)).
%F A368471 Multiplicative with a(p^e) = (p^(e+2) - p)/(p^2 - 1) + 1 if e is odd and 1 otherwise.
%F A368471 a(n) >= 1, with equality if and only if n is a square (A000290).
%F A368471 a(n) <= A000203(n), with equality if and only if n is squarefree (A005117).
%F A368471 Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^6/1080) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.51287686448947428073... .
%t A368471 f[p_, e_] := If[OddQ[e], 1 + (p^(e + 2) - p)/(p^2 - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A368471 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, (f[i,1]^(f[i,2]+2) - f[i,1])/(f[i,1]^2 - 1) + 1, 1));}
%Y A368471 Cf. A000203, A000290, A005117, A033634, A268335, A350389, A368470.
%K A368471 nonn,easy,mult
%O A368471 1,2
%A A368471 _Amiram Eldar_, Dec 26 2023