cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368472 Product of exponents of prime factorization of the exponentially odd numbers.

This page as a plain text file.
%I A368472 #7 Dec 27 2023 01:20:50
%S A368472 1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,3,1,3,1,1,1,5,1,1,1,1,1,1,3,1,1,1,
%T A368472 1,1,1,1,3,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,
%U A368472 5,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1
%N A368472 Product of exponents of prime factorization of the exponentially odd numbers.
%C A368472 The odd terms of A005361.
%C A368472 The first position of 2*k-1, for k = 1, 2, ..., is 1, 7, 24, 91, 154, 1444, 5777, 610, 92349, ..., which is the position of A085629(2*k-1) in A268335.
%H A368472 Amiram Eldar, <a href="/A368472/b368472.txt">Table of n, a(n) for n = 1..10000</a>
%F A368472 a(n) = A005361(A268335(n)).
%F A368472 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (zeta(2)^2/d) * Product_{p prime} (1 - 3/p^2 + 3/p^3 - 1/p^5) = 1.38446562720473484463..., where d = A065463 is the asymptotic density of the exponentially odd numbers.
%t A368472 f[n_] := Module[{p = Times @@ FactorInteger[n][[;; , 2]]}, If[OddQ[p], p, Nothing]]; Array[f, 150]
%o A368472 (PARI) lista(kmax) = {my(p); for(k = 1, kmax, p = vecprod(factor(k)[, 2]); if(p%2, print1(p, ", ")));}
%Y A368472 Cf. A005361, A013661, A065463, A085629, A098198, A268335.
%Y A368472 Cf. A366438, A366439.
%Y A368472 Similar sequences: A322327, A368473, A368474.
%K A368472 nonn,easy
%O A368472 1,7
%A A368472 _Amiram Eldar_, Dec 26 2023