cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368474 Product of exponents of prime factorization of the numbers whose exponents in their prime power factorization are squares (A197680).

This page as a plain text file.
%I A368474 #7 Dec 27 2023 01:19:55
%S A368474 1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,1,
%T A368474 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U A368474 1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1
%N A368474 Product of exponents of prime factorization of the numbers whose exponents in their prime power factorization are squares (A197680).
%C A368474 All the terms are squares (A000290).
%C A368474 The first position of k^2, for k = 1, 2, ..., is 1, 12, 331, 834, 21512290, 26588, ..., which is the position of A085629(k^2) in A197680.
%H A368474 Amiram Eldar, <a href="/A368474/b368474.txt">Table of n, a(n) for n = 1..10000</a>
%F A368474 a(n) = A005361(A197680(n)).
%F A368474 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/d) * Product_{p prime} (1 + Sum_{k>=1} k^2/p^(k^2))  = 1.16776748073813763932..., where d = A357016 is the asymptotic density of A197680.
%t A368474 f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, IntegerQ[Sqrt[#]] &], Times @@ e, Nothing]]; Array[f, 150]
%o A368474 (PARI) lista(kmax) = {my(e, ok); for(k = 1, kmax, e = factor(k)[, 2]; ok = 1; for(i = 1, #e, if(!issquare(e[i]), ok = 0; break)); if(ok, print1(vecprod(e), ", ")));}
%Y A368474 Cf. A000290, A005361, A085629, A197680, A357016.
%Y A368474 Similar sequences: A322327, A368472, A368473.
%K A368474 nonn,easy
%O A368474 1,12
%A A368474 _Amiram Eldar_, Dec 26 2023