This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368484 #7 Dec 27 2023 10:26:30 %S A368484 1,0,1,1,5,8,24,44,108,208,464,912,1936,3840,7936,15808,32192,64256, %T A368484 129792,259328,521472,1042432,2091008,4180992,8375296,16748544, %U A368484 33525760,67047424,134156288,268304384,536739840,1073463296,2147205120,4294377472,8589344768 %N A368484 Number of compositions (ordered partitions) of n into parts not greater than n/2. %H A368484 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %H A368484 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,4,-8,-4,8). %F A368484 G.f.: (1 - 2*x - 3*x^2 + 7*x^3 + 3*x^4 - 6*x^5) / ((1 - 2*x) * (1 - 2*x^2)^2). %F A368484 a(n) = [x^n] 1 / (1 - Sum_{1 <= j <= n/2} x^j). %t A368484 CoefficientList[Series[(1 - 2 x - 3 x^2 + 7 x^3 + 3 x^4 - 6 x^5)/((1 - 2 x) (1 - 2 x^2)^2), {x, 0, 34}], x] %t A368484 Join[{1}, LinearRecurrence[{2, 4, -8, -4, 8}, {0, 1, 1, 5, 8}, 34]] %Y A368484 Cf. A011782, A110618, A258259. %K A368484 nonn,easy %O A368484 0,5 %A A368484 _Ilya Gutkovskiy_, Dec 26 2023