cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368488 a(n) = Sum_{k=0..n} n^k * binomial(k+n-1,k).

This page as a plain text file.
%I A368488 #13 Dec 27 2023 07:44:38
%S A368488 1,2,17,334,10417,442276,23690809,1530206742,115636017473,
%T A368488 10004657077468,974950612575601,105653682110368492,
%U A368488 12602144701834193521,1640558582759557298696,231448351542446473323113,35173958220088874039434726,5728588740444710703061240065
%N A368488 a(n) = Sum_{k=0..n} n^k * binomial(k+n-1,k).
%F A368488 a(n) = [x^n] 1/((1-x) * (1-n*x)^n).
%F A368488 a(n) ~ 2^(2*n-1) * n^(n - 1/2) / sqrt(Pi). - _Vaclav Kotesovec_, Dec 27 2023
%o A368488 (PARI) a(n) = sum(k=0, n, n^k*binomial(k+n-1, k));
%Y A368488 Main diagonal of A368487.
%Y A368488 Cf. A000984, A072547.
%K A368488 nonn,easy
%O A368488 0,2
%A A368488 _Seiichi Manyama_, Dec 26 2023