This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368514 #52 Dec 12 2024 23:10:07 %S A368514 1,1,0,1,1,1,2,0,1,3,3,1,4,7,0,1,5,12,12,0,1,6,18,30,30,1,7,25,55,85, %T A368514 0,1,8,33,88,173,173,1,9,42,130,303,476,0,1,10,52,182,485,961,961,0,1, %U A368514 11,63,245,730,1691,2652,2652,1,12,75,320,1050,2741,5393,8045,0 %N A368514 Irregular triangle T(n,k) read by rows: similar to A009766 but length of rows grows like log(3)/log(2). %H A368514 Ruud H.G. van Tol, <a href="/A368514/b368514.txt">Table of n, a(n) for n = 1..11858</a> (200 rows). %H A368514 Ruud H.G. van Tol, <a href="/A368514/a368514.svg">Sequence on a lattice</a> %F A368514 Row length L(n) = A098294(n) = floor(n*log(3)/log(2)) + 1 - n. %F A368514 T(n,1) = 1. %F A368514 T(n+1,k) = T(n+1,k-1) + T(n,k) for 1 < k <= L(n). %F A368514 T(n+1,L(n+1)) = 0 if L(n+1) > L(n). %F A368514 T(n+1,2) = n-1. %F A368514 T(n+3,3) = A055998(n-1) = (n-1)*(n+4)/2. %F A368514 T(n+5,4) = A111396(n-1) = (n-1)*(n+6)*(n+7)/6. %F A368514 T(n+1,k) = Sum_{j=1..k} T(n,j) for 1 <= k <= L(n). %e A368514 Triangle T(n,k) begins: %e A368514 n|k:1| 2| 3| 4| 5| 6| 7| 8|... %e A368514 --+---+---+---+---+---+---+---+---+--- %e A368514 1| 1 %e A368514 2| 1 0 %e A368514 3| 1 1 %e A368514 4| 1 2 0 %e A368514 5| 1 3 3 %e A368514 6| 1 4 7 0 %e A368514 7| 1 5 12 12 0 %e A368514 8| 1 6 18 30 30 %e A368514 9| 1 7 25 55 85 0 %e A368514 10| 1 8 33 88 173 173 %e A368514 11| 1 9 42 130 303 476 0 %e A368514 12| 1 10 52 182 485 961 961 0 %e A368514 ... %o A368514 (PARI) row(n) = my(v=Vec([1], logint(3^n, 2)+1-n), c=1); for(i=2, n, for(j=2, c, v[j]+=v[j-1]); c=logint(3^i,2)+1-i); v %o A368514 (PARI) rows(n) = my(v=vector(n, i, Vec([1], logint(3^i,2)+1-i))); for(i=3, n, for(j=2, #v[i-1], v[i][j]=v[i][j-1]+v[i-1][j])); v %Y A368514 Cf. A009766 (Catalan's triangle), A098294 (row lengths), A100982 (row sums). %Y A368514 Cf. A055998, A111396. %K A368514 nonn,tabf %O A368514 1,7 %A A368514 _Ruud H.G. van Tol_, Dec 28 2023 %E A368514 Corrected by _Ruud H.G. van Tol_, Nov 29 2024