This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368516 #6 Jan 20 2024 09:46:16 %S A368516 2,6,4,2,10,12,8,4,2,14,20,20,12,8,4,2,18,28,32,28,18,12,8,4,2,22,36, %T A368516 44,44,38,24,18,12,8,4,2,26,44,56,60,58,48,32,24,18,12,8,4,2,30,52,68, %U A368516 76,78,72,60,40,32,24,18,12,8,4,2,34,60,80,92,98,96 %N A368516 Irregular triangular array T, read by rows: T(n,k) = number of sums |x-y|+|y-z| = k, where x,y,z are in {1,2,...,n} and x != y and y != z. %C A368516 Row n consists of 2n-1 even positive integers. %e A368516 First six rows: %e A368516 2 %e A368516 6 4 2 %e A368516 10 12 8 4 2 %e A368516 14 20 20 12 8 4 2 %e A368516 18 28 32 28 18 12 8 4 2 %e A368516 22 36 44 44 38 24 18 12 8 4 2 %e A368516 For n=3, there are 12 triples (x,y,z) having x != y and y != z: %e A368516 121: |x-y| + |y-z| = 2 %e A368516 123: |x-y| + |y-z| = 2 %e A368516 131: |x-y| + |y-z| = 4 %e A368516 132: |x-y| + |y-z| = 3 %e A368516 212: |x-y| + |y-z| = 2 %e A368516 213: |x-y| + |y-z| = 3 %e A368516 231: |x-y| + |y-z| = 3 %e A368516 232: |x-y| + |y-z| = 2 %e A368516 312: |x-y| + |y-z| = 3 %e A368516 313: |x-y| + |y-z| = 4 %e A368516 321: |x-y| + |y-z| = 2 %e A368516 323: |x-y| + |y-z| = 2, %e A368516 so that row 2 of the array is (6,4,2), representing six 2s, four 3s, and two 4s. %t A368516 t1[n_] := t1[n] = Tuples[Range[n], 3]; %t A368516 t[n_] := t[n] = Select[t1[n], #[[1]] != #[[2]] && #[[2]] != #[[3]] &]; %t A368516 a[n_, k_] := Select[t[n], Abs[#[[1]] - #[[2]]] + Abs[#[[2]] - #[[3]]] == k &]; %t A368516 u = Table[Length[a[n, k]], {n, 2, 15}, {k, 2, 2 n - 2}] %t A368516 v = Flatten[u]; (* sequence *) %t A368516 Column[Table[Length[a[n, k]], {n, 2, 15}, {k, 2, 2 n - 2}]] (* array *) %Y A368516 Cf. A011379 (row sums), A007590 (limiting reverse row), A368434, A368437, A368515, A368517, A368518, A368519, A368520, A368521, A368522. %K A368516 nonn,tabf %O A368516 1,1 %A A368516 _Clark Kimberling_, Dec 31 2023