This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368519 #4 Jan 25 2024 08:07:44 %S A368519 2,4,3,2,6,6,8,2,2,8,9,14,9,6,2,2,10,12,20,16,16,6,6,2,2,12,15,26,23, %T A368519 26,17,12,6,6,2,2,14,18,32,30,36,28,26,12,12,6,6,2,2,16,21,38,37,46, %U A368519 39,40,27,20,12,12,6,6,2,2,18,24,44,44,56,50,54,42 %N A368519 Irregular triangular array T, read by rows: T(n,k) = number of sums |x-y|+|y-z| = k, where x,y,z are in {1,2,...,n} and x < z. %C A368519 Row n consists of 2n-1 positive integers. %e A368519 First six rows: %e A368519 2 %e A368519 4 3 2 %e A368519 6 6 8 2 2 %e A368519 8 9 14 9 6 2 2 %e A368519 10 12 20 16 16 6 6 2 2 %e A368519 12 15 26 23 26 17 12 6 6 2 2 %e A368519 For n=3, there are 9 triples (x,y,z) having x < z: %e A368519 112: |x-y| + |y-z| = 1 %e A368519 113: |x-y| + |y-z| = 2 %e A368519 122: |x-y| + |y-z| = 1 %e A368519 123: |x-y| + |y-z| = 2 %e A368519 132: |x-y| + |y-z| = 3 %e A368519 133: |x-y| + |y-z| = 2 %e A368519 213: |x-y| + |y-z| = 3 %e A368519 223: |x-y| + |y-z| = 1 %e A368519 233: |x-y| + |y-z| = 1, %e A368519 so that row 1 of the array is (4,3,2), representing four 1s, three 2s, and two 3s. %t A368519 t1[n_] := t1[n] = Tuples[Range[n], 3]; %t A368519 t[n_] := t[n] = Select[t1[n], #[[1]] < #[[3]] &]; %t A368519 a[n_, k_] := Select[t[n], Abs[#[[1]] - #[[2]]] + Abs[#[[2]] - #[[3]]] == k &]; %t A368519 u = Table[Length[a[n, k]], {n, 2, 15}, {k, 1, 2 n - 3}]; %t A368519 v = Flatten[u]; (* sequence *) %t A368519 Column[Table[Length[a[n, k]], {n, 2, 15}, {k, 1, 2 n - 3}]] (* array *) %Y A368519 Cf. A006002 (row sums), A110660 (limiting reverse row), A368434, A368437, A368515, A368516, A368517, A368518, A368520, A368521, A368522. %K A368519 nonn,tabf %O A368519 1,1 %A A368519 _Clark Kimberling_, Jan 22 2024