This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368521 #10 Jan 29 2024 11:01:54 %S A368521 1,6,2,17,8,2,36,18,8,2,65,32,18,8,2,106,50,32,18,8,2,161,72,50,32,18, %T A368521 8,2,232,98,72,50,32,18,8,2,321,128,98,72,50,32,18,8,2,430,162,128,98, %U A368521 72,50,32,18,8,2,561,200,162,128,98,72,50,32,18,8,2,716 %N A368521 Triangular array T, read by rows: T(n,k) = number of sums |x-y| + |y-z| - |x-z| = k, where x,y,z are in {1,2,...,n}. %e A368521 First eight rows: %e A368521 1 %e A368521 6 2 %e A368521 17 8 2 %e A368521 36 18 8 2 %e A368521 65 32 18 8 2 %e A368521 106 50 32 18 8 2 %e A368521 161 72 50 32 18 8 2 %e A368521 232 98 72 50 32 18 8 2 %e A368521 For n=2, there are 8 triples (x,y,z): %e A368521 111: |x-y| + |y-z| - |x-z| = 0 %e A368521 112: |x-y| + |y-z| - |x-z| = 0 %e A368521 121: |x-y| + |y-z| - |x-z| = 2 %e A368521 122: |x-y| + |y-z| - |x-z| = 0 %e A368521 211: |x-y| + |y-z| - |x-z| = 0 %e A368521 212: |x-y| + |y-z| - |x-z| = 2 %e A368521 221: |x-y| + |y-z| - |x-z| = 0 %e A368521 222: |x-y| + |y-z| - |x-z| = 0 %e A368521 so row 2 of the array is (6,2), representing six 0s and two 2s. %t A368521 t[n_] := t[n] = Tuples[Range[n], 3] %t A368521 a[n_, k_] := Select[t[n], Abs[#[[1]] - #[[2]]] + Abs[#[[2]] - #[[3]]] - Abs[#[[1]] - #[[3]]] == k &] %t A368521 u = Table[Length[a[n, k]], {n, 1, 15}, {k, 0, 2 n - 2, 2}] %t A368521 v = Flatten[u] (* sequence *) %t A368521 Column[Table[Length[a[n, k]], {n, 1, 15}, {k, 0, 2 n - 2, 2}]] (* array *) %Y A368521 Cf. A084990 (column 1), A000578 (row sums), A001105 (limiting reversed row), A368434, A368437, A368515, A368516, A368517, A368518, A368519, A368520, A368522, A368604, A368605, A368606, A368607, A368609. %K A368521 nonn,tabl %O A368521 1,2 %A A368521 _Clark Kimberling_, Jan 25 2024