This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368523 #21 Jan 04 2024 17:31:46 %S A368523 1,2,4,3,6,8,12,5,10,9,18,24,16,20,7,14,15,30,36,28,48,40,60,21,42,32, %T A368523 11,22,72,13,26,27,54,56,84,44,45,90,120,80,96,33,66,25,50,17,34,52, %U A368523 35,70,108,64,19,38,144,39,78,180,63,126,168,88,132,100,112 %N A368523 Positive integers in decreasing order of tau(k)/k, where tau(k) = A000005(k). %C A368523 Because tau(k)/k is bounded by 2/sqrt(k), this sequence is well-defined. %C A368523 In the case of ties, terms are sorted from least to greatest. %C A368523 Let c be the j-th distinct value of tau(a(n))/a(n). Terms of this sequence for which tau(a(n))/a(n) >= c are the proper divisors of A059992(j + 1) for 1 <= j <= 4. True for j = 0 if the 0th value of c is taken to be infinity. Pattern breaks for j > 4. %e A368523 tau(1)/1 = tau(2)/2 = 1 %e A368523 tau(4)/4 = 3/4 %e A368523 tau(3)/3 = tau(6)/6 = 2/3 %e A368523 tau(8)/8 = tau(12)/12 = 1/2 %e A368523 tau(5)/5 = tau(10)/10 = 2/5 %e A368523 tau(9)/9 = tau(18)/18 = tau(24)/24 = 1/3 %t A368523 nmax = 100; s = Sort[Table[{k, DivisorSigma[0, k]/k}, {k, 1, nmax^2}], #1[[2]] >= #2[[2]] &]; Table[s[[j, 1]], {j, 1, nmax}] (* _Vaclav Kotesovec_, Jan 04 2024 *) %o A368523 (Lua) %o A368523 length = 100 %o A368523 result = {} %o A368523 for n = 1, length do %o A368523 local div_count = 0 %o A368523 local root_n = math.sqrt(n) %o A368523 for d = 1, root_n do %o A368523 if n % d == 0 then %o A368523 div_count = div_count + 2 %o A368523 end %o A368523 end %o A368523 if (root_n == math.floor(root_n)) then %o A368523 div_count = div_count - 1 %o A368523 end %o A368523 result[n] = {n, div_count / n} %o A368523 end %o A368523 function compare(a, b) %o A368523 if a[2] ~= b[2] then %o A368523 return a[2] > b[2] %o A368523 else %o A368523 return a[1] < b[1] %o A368523 end %o A368523 end %o A368523 table.sort(result, compare) %o A368523 i = 1 %o A368523 bound = 2 / math.sqrt(length) %o A368523 while result[i][2] >= bound do %o A368523 io.write(result[i][1] .. ',') %o A368523 i = i + 1 %o A368523 end %Y A368523 Cf. A000005, A090387, A090395, A323383, A354768. %K A368523 nonn %O A368523 1,2 %A A368523 _Keith J. Bauer_, Dec 28 2023