This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368532 #5 Dec 29 2023 10:56:46 %S A368532 7,25,30,42,45,51,53,54,60,75,77,78,83,85,86,90,92,99,101,102,105,108, %T A368532 113,114,116,120,385,390,408,428,434,436,458,460,466,468,482,484,488, %U A368532 496,642,645,668,680,689,692,713,716,721,724,728,737,740,752,771,773 %N A368532 Minimal numbers whose binary indices of binary indices contradict a strict version of the axiom of choice. %C A368532 Minimality is relative to the ordering where x < y means the binary indices of x are a subset of those of y (a Boolean algebra). %C A368532 A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. %C A368532 The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once. %e A368532 The terms the corresponding set-systems begin: %e A368532 7: {{1},{2},{1,2}} %e A368532 25: {{1},{3},{1,3}} %e A368532 30: {{2},{1,2},{3},{1,3}} %e A368532 42: {{2},{3},{2,3}} %e A368532 45: {{1},{1,2},{3},{2,3}} %e A368532 51: {{1},{2},{1,3},{2,3}} %e A368532 53: {{1},{1,2},{1,3},{2,3}} %e A368532 54: {{2},{1,2},{1,3},{2,3}} %e A368532 60: {{1,2},{3},{1,3},{2,3}} %e A368532 75: {{1},{2},{3},{1,2,3}} %e A368532 77: {{1},{1,2},{3},{1,2,3}} %e A368532 78: {{2},{1,2},{3},{1,2,3}} %e A368532 83: {{1},{2},{1,3},{1,2,3}} %e A368532 85: {{1},{1,2},{1,3},{1,2,3}} %e A368532 86: {{2},{1,2},{1,3},{1,2,3}} %e A368532 90: {{2},{3},{1,3},{1,2,3}} %e A368532 92: {{1,2},{3},{1,3},{1,2,3}} %e A368532 99: {{1},{2},{2,3},{1,2,3}} %t A368532 vmin[y_]:=Select[y,Function[s,Select[DeleteCases[y,s], SubsetQ[bpe[s],bpe[#]]&]=={}]]; %t A368532 Select[Range[100],Select[Tuples[bpe/@bpe[#]] ,UnsameQ@@#&]=={}&]//vmin %Y A368532 The version for MM-numbers of multiset partitions is A368187. %Y A368532 A000110 counts set partitions. %Y A368532 A003465 counts covering set-systems, unlabeled A055621. %Y A368532 A058891 counts set-systems, unlabeled A000612, connected A323818. %Y A368532 A283877 counts non-isomorphic set-systems, connected A300913. %Y A368532 Cf. A007716, A134964, A355529, A367905, A367907. %Y A368532 Cf. A140637, A367867, A367903, A368094, A368097, A368413. %K A368532 nonn %O A368532 1,1 %A A368532 _Gus Wiseman_, Dec 29 2023