cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368542 The number of divisors of n whose prime factors are all Mersenne primes (A000668).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 4, 1, 1, 2, 1, 1, 4, 2, 1, 2, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 1, 4, 1, 1, 3, 1, 1, 2, 3, 1, 2, 1, 1, 4, 1, 2, 2, 1, 1, 2, 1, 2, 6, 1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 5, 1, 1, 4, 1, 1, 2, 1, 1, 3, 2, 1, 4, 1, 1, 2, 1, 3, 3, 1, 1, 2, 1, 1, 4, 1, 1, 4, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 2, 2, 1, 6
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2023

Keywords

Comments

The number of terms of A056652 U {1} that divide n.

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[FactorInteger[n][[;; , 1]], # + 1 == 2^IntegerExponent[# + 1, 2] &]; f[p_, e_] := If[q[p], e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, if((f[i,1]+1) >> valuation(f[i,1]+1, 2) == 1 , f[i,2] + 1, 1))};

Formula

Multiplicative with a(p^e) = e+1 if p is a Mersenne prime (A000668), and 1 otherwise.
a(n) >= 1, with equality if and only if n is in A161790.
a(n) <= A000005(n), with equality if and only if n is in A056652 U {1}.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/Product_{k>=1} (1 - 1/A000668(k)) = 1.82292512097260346512... .