cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368543 The number of divisors of n whose prime factors are all of the form 2^k + 1 (A092506).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 1, 4, 3, 4, 1, 6, 1, 2, 4, 5, 2, 6, 1, 6, 2, 2, 1, 8, 3, 2, 4, 3, 1, 8, 1, 6, 2, 4, 2, 9, 1, 2, 2, 8, 1, 4, 1, 3, 6, 2, 1, 10, 1, 6, 4, 3, 1, 8, 2, 4, 2, 2, 1, 12, 1, 2, 3, 7, 2, 4, 1, 6, 2, 4, 1, 12, 1, 2, 6, 3, 1, 4, 1, 10, 5, 2, 1, 6, 4, 2, 2, 4, 1, 12, 1, 3, 2, 2, 2, 12, 1, 2, 3, 9
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2023

Keywords

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[FactorInteger[n][[;; , 1]], # - 1 == 2^IntegerExponent[# - 1, 2] &]; f[p_, e_] := If[q[p], e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, if((f[i,1]-1) >> valuation(f[i,1]-1, 2) == 1 , f[i,2] + 1, 1))};

Formula

Multiplicative with a(p^e) = e+1 if p is in A092506 (i.e., p is either 2 or a Fermat prime), and 1 otherwise.
a(n) >= 1, with equality if and only if all the prime factors of n are not of the form 2^k + 1.
a(n) <= A000005(n), with equality if and only if all the prime factors of n are in A092506 (n is in A143513 assuming that there are only 5 Fermat primes).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/Product_{k>=1} (1 - 1/A092506(k)) = 3.99999999906867742538... . This value is exactly 4294967295/1073741824 if there are only 5 Fermat primes.