A368544 The number of divisors of n whose prime factors are all of the form k^2+1.
1, 2, 1, 3, 2, 2, 1, 4, 1, 4, 1, 3, 1, 2, 2, 5, 2, 2, 1, 6, 1, 2, 1, 4, 3, 2, 1, 3, 1, 4, 1, 6, 1, 4, 2, 3, 2, 2, 1, 8, 1, 2, 1, 3, 2, 2, 1, 5, 1, 6, 2, 3, 1, 2, 2, 4, 1, 2, 1, 6, 1, 2, 1, 7, 2, 2, 1, 6, 1, 4, 1, 4, 1, 4, 3, 3, 1, 2, 1, 10, 1, 2, 1, 3, 4, 2, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_] := AllTrue[FactorInteger[n][[;; , 1]], IntegerQ[Sqrt[# - 1]] &]; f[p_, e_] := If[q[p], e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f=factor(n)); prod(i=1, #f~, if(issquare(f[i,1]-1), f[i,2] + 1, 1))};
-
Python
from math import prod from sympy import factorint from sympy.ntheory.primetest import is_square def A368544(n): return prod(e+1 for p, e in factorint(n).items() if is_square(p-1)) # Chai Wah Wu, Dec 30 2023
Comments