This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368547 #31 Jan 26 2024 06:02:47 %S A368547 2,3,6,1,5,2,8,8,6,4,7,7,1,2,2,9,7,4,8,6,0,5,7,8,2,8,6,0,6,0,3,2,6,9, %T A368547 6,0,1,5,3,2,2,6,2,9,7,9,2,3,3,1,0,9,7,6,4,0,7,3,4,8,4,0,1,7,0,8,3,9, %U A368547 1,1,5,6,4,4,0,4,1,3,1,6,5,7,9,5,2,9,2,8,6,6,6,0,5,5,5,1,3,0,8,4,0,4,1,1,8 %N A368547 Decimal expansion of the Wolf-Kawalec constant of index 1. %C A368547 For the Wolf-Kawalec constant of index 0 see A368551. %C A368547 For the Wolf-Kawalec constant of index 2 see A368568. %H A368547 Artur Kawalec, <a href="https://arxiv.org/abs/2312.16811">On the series expansion of a square-free zeta series</a>, arXiv:2312.16811 [math.NT], 2023. %H A368547 Marek Wolf, <a href="https://cmst.eu/articles/numerical-determination-of-a-certain-mathematical-constant-related-to-the-mobius-function">Numerical Determination of a Certain Mathematical Constant Related to the Mobius Function</a>, Computational Methods in Science and Technology, Volume 29 (1-4) 2023, 17-20 see formula (20). %F A368547 Equals -(864*(zeta'(2))^2 - 72*Pi^2*(gamma*zeta'(2) + zeta''(2)) - 6*Pi^4*gamma_1)/Pi^6 where gamma_1 is A082633 negated. %F A368547 Equals -(6*Pi^2*(2*(gamma + log(2) - 12*log(Glaisher) + log(Pi))*(gamma + 2*log(2) - 24*log(Glaisher) + 2*log(Pi)) - gamma_1) - 72*zeta''(2))/Pi^4 where Glaisher is the Glaisher-Kinkelin constant A (see A074962). %e A368547 0.23615288647712297486... %t A368547 RealDigits[Limit[D[Zeta[x]/Zeta[2 x] - 6/(Pi^2 (x - 1)), x], x -> 1], %t A368547 10, 105][[1]] %Y A368547 Cf. A000796, A001620, A073002, A074962, A082633, A201994, A368551, A368568. %K A368547 nonn,cons %O A368547 0,1 %A A368547 _Artur Jasinski_, Dec 30 2023