cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A375783 Number of partitions with weight fixed by reversal.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 4, 4, 6, 2, 10, 2, 8, 14, 10, 2, 20, 2, 28, 28, 12, 2, 52, 28, 14, 52, 80, 2, 120, 2, 76, 90, 18, 198, 320, 2, 20, 142, 388, 2, 478, 2, 478, 872, 24, 2, 956, 506, 652, 304, 988, 2, 1852, 1944, 2210, 418, 30, 2, 5528, 2, 32, 5168, 2518, 5032
Offset: 1

Views

Author

Chai Wah Wu, Aug 28 2024

Keywords

Crossrefs

Programs

  • Python
    from sympy import divisors
    from sympy.utilities.iterables import partitions
    def A375783(n):
        def A183917_T(n,k): return sum(1 for p in partitions(k*n,m=n,k=k<<1))
        x = sum(A183917_T((n+1)//d-2,d-1) for d in divisors(n+1>>1, generator=True)) if n&1 else 0
        y = sum(A183917_T(d-2,(n+1)//d-1) for d in divisors((n+1)>>(~(n+1)&n).bit_length(), generator=True) if d>=3)<<1
        return x+y

Formula

a(n) = 2 if and only if n = 3 or n + 1 > 2 is prime (Hemmer and Westrem).
For proofs of the following, see A368548.
Let T(n,k) be the table in A183917.
Let x = 0 if n is even and x = Sum_{d|(n+1)/2} T((n+1)/d-2,d-1) if n is odd.
Let y = 2*Sum_{d|n+1, d>=3, and d is odd} T(d-2,(n+1)/d-1).
Then a(n) = x+y.
If n>3 is odd and (n+1)/2 is prime, then a(n) = A368548(n) = (n+3)/2.
a(2^n-1) = Sum_{i=0..n-1} T(2^(n-i)-2,2^i-1).

A370070 a(n) = Sum_{i=0..n-1} binomial(2^i+2^(n-i-1)-2,2^i-1).

Original entry on oeis.org

0, 1, 2, 4, 10, 38, 274, 5130, 353186, 180449810, 1025875786562, 474164444389402658, 13339869168335987186843266, 6036430661900479858398240235709517890, 3241401154265052413102761158540183436937430482058498
Offset: 0

Views

Author

Chai Wah Wu, Feb 08 2024

Keywords

Crossrefs

Cf. A368548.

Programs

  • Mathematica
    Table[Sum[Binomial[2^i+2^(n-i-1)-2,2^i-1],{i,0,n-1}],{n,0,14}] (* James C. McMahon, Feb 08 2024 *)
  • Python
    from math import comb
    def A370070(n): return (sum(comb((1<>1))<<1) + (comb(((1<<(n>>1))-1)<<1,(1<<(n>>1))-1) if n&1 else 0)

Formula

a(n) = A368548(2^n-1).
If n is odd, a(n) = binomial(2*(2^((n-1)/2)-1),2^((n-1)/2)-1) + 2*Sum_{i=0..(n-3)/2} binomial(2^i+2^(n-i-1)-2,2^i-1).
If n is even, a(n) = 2*Sum_{i=0..n/2-1} binomial(2^i+2^(n-i-1)-2,2^i-1).
log(a(n)) ~ c * 2^(n/2), where c = 3*log(3)/2 - log(2) if n is even and c = sqrt(2)*log(2) if n is odd. - Vaclav Kotesovec, Feb 10 2024
Showing 1-2 of 2 results.