cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368558 Number of fractions i/n that are in the Cantor set.

Original entry on oeis.org

2, 2, 4, 4, 2, 4, 2, 4, 8, 6, 2, 8, 8, 2, 4, 4, 2, 8, 2, 8, 4, 2, 2, 8, 2, 8, 16, 10, 2, 12, 2, 4, 4, 2, 2, 16, 2, 2, 16, 16, 2, 4, 2, 4, 8, 2, 2, 8, 2, 6, 4, 10, 2, 16, 2, 10, 4, 2, 2, 16, 2, 2, 8, 4, 8, 4, 2, 4, 4, 6, 2, 16, 2, 2, 4, 4, 2, 16, 2, 16
Offset: 1

Views

Author

Jason Yuen, Dec 30 2023

Keywords

Comments

The Cantor set is all reals in the range [0,1] which can be written in ternary without using digit 1 (including allowing 0222... to be used instead of 1000...).
All terms are even.
a(n) = O(n^(log_3(2))).
a(n) is the number of solutions to CCC 2023, Problem S5.
Does this sequence contain every positive even integer?

Examples

			For n = 12, there are a(12) = 8 fractions, and their numerators are i = 0, 1, 3, 4, 8, 9, 11, 12.
		

Crossrefs

Programs

  • Python
    def is_member(i, n):  # Returns True if i/n is in the Cantor set
      visited = set()
      while True:
        if n < 3 * i < 2 * n: return False
        if i in visited: return True
        visited.add(i)
        i = 3 * min(i, n - i)
    def a(n): return sum(is_member(i, n) for i in range(n + 1))