This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368566 #6 Jan 20 2024 09:47:01 %S A368566 0,2,6,18,34,48,62,108,166,242,334,512,706,984,1368,1876,2492,3360, %T A368566 4422,5848,7574,9792,12596,16130,20412,25850 %N A368566 a(n) = number of pairs (p,q) of partitions of n such that d(p,q) > o(p,q), where d and o are distance functions; see Comments. %C A368566 The definition of d depends on the greedy ordering of the partitions p(i) of n; that is, p(1) >= p(2) >= ... >= p(k), where k = A000041(n); see A366156. The ordinal distance o is defined by o(p(i),p(j)) = |i-j|. %F A368566 A368564(n) + A368565(n) + a(n) = A001255(n) for n >= 1. %e A368566 The 5 partitions of 4 are (p(1),p(2),p(3),p(4),p(5)) = (4,21,22,211,1111). The following table shows the 25 pairs d(p(i),q(j)) and o(p(i),q(j)): %e A368566 | 4 31 22 211 1111 %e A368566 ------------------------------------------------ %e A368566 4 d | 0 2 4 4 6 %e A368566 o | 0 1 2 3 4 %e A368566 31 d | 2 0 2 2 4 %e A368566 o | 1 0 1 2 3 %e A368566 22 d | 4 2 0 2 4 %e A368566 o | 2 1 0 1 2 %e A368566 211 d | 4 2 2 0 2 %e A368566 o | 3 2 1 0 1 %e A368566 1111 d | 6 4 4 2 0 %e A368566 o | 4 3 2 1 0 %e A368566 The table shows 18 pairs (p,q) for which d(p,q) > o(p,q), so a(4) = 18. %t A368566 c[n_] := PartitionsP[n]; %t A368566 q[n_, k_] := q[n, k] = IntegerPartitions[n][[k]]; %t A368566 r[n_, k_] := r[n, k] = Join[q[n, k], ConstantArray[0, n - Length[q[n, k]]]]; %t A368566 d[u_, v_] := Total[Abs[u - v]]; %t A368566 p[n_] := Flatten[Table[d[r[n, j], r[n, k]] - Abs[j - k], {j, 1, c[n]}, {k, 1, c[n]}]]; %t A368566 Table[Count[p[n], 0], {n, 1, 16}] (* A368565 *) %t A368566 Table[Length[Select[p[n], Sign[#] == -1 &]], {n, 1,16}] (* A368566 *) %t A368566 Table[Length[Select[p[n], Sign[#] == 1 &]], {n, 1, 16}] (* A368567 *) %Y A368566 Cf. A000041, A001255, A366156, A368564, A368565. %K A368566 nonn,more %O A368566 1,2 %A A368566 _Clark Kimberling_, Dec 31 2023