cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368568 Decimal expansion of the Wolf-Kawalec constant of index 2.

This page as a plain text file.
%I A368568 #18 Jan 26 2024 12:31:18
%S A368568 3,1,9,3,8,4,1,2,0,4,0,8,0,1,4,2,4,9,2,4,9,4,6,5,2,0,7,0,7,4,5,7,2,0,
%T A368568 1,5,2,8,1,6,1,4,2,9,2,0,2,4,7,8,3,7,2,3,8,7,0,0,2,3,0,4,9,0,5,6,0,1,
%U A368568 4,9,0,5,6,8,4,2,6,7,7,1,3,4,1,4,6,9,7,4,3,2,4,1,1,1,4,4,5,1,9,0,6,0,2,6,5
%N A368568 Decimal expansion of the Wolf-Kawalec constant of index 2.
%C A368568 For the Wolf-Kawalec constant of index 0 see A368551.
%C A368568 For the Wolf-Kawalec constant of index 1 see A368547.
%H A368568 Artur Kawalec, <a href="https://arxiv.org/abs/2312.16811">On the series expansion of a square-free zeta series</a>, arXiv:2312.16811 [math.NT], 2023 see Table 1.
%H A368568 Marek Wolf, <a href="https://cmst.eu/articles/numerical-determination-of-a-certain-mathematical-constant-related-to-the-mobius-function">Numerical Determination of a Certain Mathematical Constant Related to the Mobius Function</a>, Computational Methods in Science and Technology, Volume 29 (1-4) 2023, 17-20 see formula (20).
%F A368568 Equals 6*(Pi^6*gamma_2 - 3456*(zeta'(2))^3 + 288*Pi^2*zeta'(2)*(gamma*zeta'(2) + 2*zeta''(2)) + 8*Pi^4*(3*gamma_1*zeta(2) - 3*gamma*zeta''(2) - 2*zeta'''(2)))/Pi^8 where gamma_2 is A086279.
%e A368568 0.3193841204080142492494652...
%t A368568 RealDigits[Limit[D[D[Zeta[x]/Zeta[2 x] - 6/(Pi^2 (x - 1)), x], x], x -> 1],10,105][[1]]
%Y A368568 Cf. A001620, A073002, A086279, A201994, A368547, A368551.
%K A368568 nonn,cons
%O A368568 0,1
%A A368568 _Artur Jasinski_, Dec 30 2023