A368571 Triangle read by rows where T(n,k) is the number of positive integers M which have both n and k as factor differences, 1 <= k < n.
0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 2, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 2, 1, 1, 1, 2, 0, 1, 0, 0, 3, 2, 1, 3, 1, 1, 1, 1, 0, 0, 1, 1, 3, 1, 1, 1, 1, 0, 1, 0, 0, 3, 3, 1, 2, 2, 1, 2, 2, 1, 1, 0, 0, 3, 2, 1, 2, 2, 1, 2, 1, 1, 0, 1, 0, 0
Offset: 2
Examples
Triangle begins: k=1 2 3 4 5 6 7 8 n=2: 0 n=3: 0, 0 n=4: 1, 0, 0 n=5: 1, 1, 0, 0 n=6: 1, 0, 1, 0, 0 n=7: 1, 2, 1, 1, 0, 0 n=8: 2, 1, 1, 0, 1, 0, 0 n=9: 1, 1, 2, 1, 1, 1, 0, 0
Links
- Kevin Ryde, Table of n, a(n) for rows n=2..150, flattened
- Paul Erdős and Moshe Rosenfeld, The factor-difference set of integers, Acta Arithmetica, volume 79, number 4, 1997, pages 353-359.
Crossrefs
Cf. A368312 (factor differences).
Programs
-
PARI
T(n,k) = my(t=2*(n^2+k^2), v=apply(sqr,divisors(n^2-k^2))); sum(i=1,#v\2, my(m=v[i]+v[#v-i+1]-t); m>0 && m%16==0);
Formula
T(n,k) = number of rows of A368312 which contain both n and k.
Comments