This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368584 #14 Jul 30 2025 11:26:48 %S A368584 1,0,2,0,3,12,0,4,60,120,0,5,210,1260,1680,0,6,630,8400,30240,30240,0, %T A368584 7,1736,45360,327600,831600,665280,0,8,4536,216720,2772000,13305600, %U A368584 25945920,17297280,0,9,11430,956340,20207880,162162000,575134560,908107200,518918400 %N A368584 Table read by rows: T(n, k) = A124320(n + 1, k) * A048993(n, k). %H A368584 Elena L. Wang and Guoce Xin, <a href="https://arxiv.org/abs/2507.15654">On Ward Numbers and Increasing Schröder Trees</a>, arXiv:2507.15654 [math.CO], 2025. See p. 12. %e A368584 Triangle starts: %e A368584 [0] [1] %e A368584 [1] [0, 2] %e A368584 [2] [0, 3, 12] %e A368584 [3] [0, 4, 60, 120] %e A368584 [4] [0, 5, 210, 1260, 1680] %e A368584 [5] [0, 6, 630, 8400, 30240, 30240] %e A368584 [6] [0, 7, 1736, 45360, 327600, 831600, 665280] %e A368584 [7] [0, 8, 4536, 216720, 2772000, 13305600, 25945920, 17297280] %o A368584 (SageMath) %o A368584 def Trow(n): return [rising_factorial(n+1, k)*stirling_number2(n, k) for k in range(n+1)] %o A368584 for n in range(7): print(Trow(n)) %Y A368584 Cf. A124320 (rising factorial), A048993(Stirling2), A053492 (row sums), A213236 (alternating row sums), A001813 (main diagonal), A368583. %K A368584 nonn,tabl %O A368584 0,3 %A A368584 _Peter Luschny_, Jan 10 2024