cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368592 a(n) = numerator of -(1/4)*n!*(2 + n!)*(-2 + 1/(1 + floor(n/2 - 1/2))) - n!*Sum_{m=1..1 + 2*floor(n/2 - 1/2)} 1/m.

This page as a plain text file.
%I A368592 #20 Jan 08 2024 22:44:50
%S A368592 -1,0,7,190,5826,214956,11104542,711175536,59256152496,5925678248160,
%T A368592 730285755406560,105161159860398720,18003044434808914560,
%U A368592 3528596711774282883840,801568243461355261718400,205201470326854119387494400,59742508072063053997776844800
%N A368592 a(n) = numerator of -(1/4)*n!*(2 + n!)*(-2 + 1/(1 + floor(n/2 - 1/2))) - n!*Sum_{m=1..1 + 2*floor(n/2 - 1/2)} 1/m.
%C A368592 In the sum formula below, changing n! to n in the outer summation yields A161664.
%F A368592 For n>1: a(n) = Sum_{h=1..n!} Sum_{m=1..1 + 2*floor(n/2 - 1/2)} Sum_{k=1 + floor(h/(m + 1))..floor(h/m - 1/m)} 1.
%e A368592 The fractions, of which a(n) is the numerator, begin: -1/4, 0, 7, 190, 5826, ...
%t A368592 Numerator[Table[-1/4*n!*(2 + n!)*(-2 + 1/(1 + Floor[n/2 - 1/2])) - n!*Sum[1/m, {m, 1, 1 + 2*Floor[n/2 - 1/2]}], {n, 1, 17}]]
%Y A368592 Cf. A161664, A006218.
%K A368592 sign,frac
%O A368592 1,3
%A A368592 _Mats Granvik_, Dec 31 2023