This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368601 #14 Jul 25 2024 18:26:53 %S A368601 1,1,3,32,1201,151286,62453670,84707326890,384641855115279 %N A368601 Number of ways to choose a set of n nonempty subsets of {1..n} such that it is possible to choose a different element from each. %C A368601 The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once. %H A368601 Wikipedia, <a href="https://en.wikipedia.org/wiki/Axiom_of_choice">Axiom of choice</a>. %F A368601 a(n) + A368600(n) = A136556(n). %e A368601 The a(2) = 3 set-systems: %e A368601 {{1},{2}} %e A368601 {{1},{1,2}} %e A368601 {{2},{1,2}} %e A368601 Non-isomorphic representatives of the a(3) = 32 set-systems: %e A368601 {{1},{2},{3}} %e A368601 {{1},{2},{1,3}} %e A368601 {{1},{2},{1,2,3}} %e A368601 {{1},{1,2},{1,3}} %e A368601 {{1},{1,2},{2,3}} %e A368601 {{1},{1,2},{1,2,3}} %e A368601 {{1},{2,3},{1,2,3}} %e A368601 {{1,2},{1,3},{2,3}} %e A368601 {{1,2},{1,3},{1,2,3}} %t A368601 Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}],Length[Select[Tuples[#], UnsameQ@@#&]]>0&]],{n,0,3}] %o A368601 (Python) %o A368601 from itertools import combinations, product, chain %o A368601 def v(c): %o A368601 for elements in product(*c): %o A368601 if len(set(elements)) == len(elements): %o A368601 return True %o A368601 return False %o A368601 def a(n): %o A368601 if n == 0: %o A368601 return 1 %o A368601 subsets = list(chain.from_iterable(combinations(range(1, n + 1), r) for r in %o A368601 range(1, n + 1))) %o A368601 cs = combinations(subsets, n) %o A368601 c = sum(1 for c in cs if v(c)) %o A368601 return c %o A368601 [print(a(n)) for n in range(7)] # _Robert P. P. McKone_, Jan 02 2024 %Y A368601 For a unique choice we have A003024, any length A367904 (ranks A367908). %Y A368601 Sets of n nonempty subsets of {1..n} are counted by A136556. %Y A368601 For any length we have A367902, ranks A367906, no singletons A367770. %Y A368601 The complement is A368600, any length A367903 (see also A367907, A367769). %Y A368601 A000372 counts antichains, covering A006126, nonempty A014466. %Y A368601 A003465 counts covering set-systems, unlabeled A055621. %Y A368601 A058891 counts set-systems, unlabeled A000612. %Y A368601 A059201 counts covering T_0 set-systems. %Y A368601 A323818 counts covering connected set-systems, unlabeled A323819. %Y A368601 Cf. A003025, A088957, A133686, A334282, A355529, A355740, A367862, A367867, A367901, A367905, A368094, A368097. %K A368601 nonn,hard,more %O A368601 0,3 %A A368601 _Gus Wiseman_, Jan 01 2024 %E A368601 a(6) from _Robert P. P. McKone_, Jan 02 2024 %E A368601 a(7)-a(8) from _Christian Sievers_, Jul 25 2024