This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368602 #11 Jan 04 2024 15:33:53 %S A368602 1,0,1,0,1,1,0,5,3,1,0,79,33,7,1,0,3377,1071,161,15,1,0,362431,92289, %T A368602 10591,705,31,1,0,93473345,19856703,1832705,93375,2945,63,1,0, %U A368602 56272471039,10249747713,789619327,32382465,782719,12033,127,1 %N A368602 Triangle read by rows where T(n,k) is the number of labeled acyclic digraphs on {1..n} with sinks {1..k}. %C A368602 Also the number of set-systems with n vertices and n edges such that {i} is a singleton edge iff i <= k, and such that there is only one way to choose a different vertex from each edge. %F A368602 T(n,k) = A361718(n,k)/binomial(n,k). %e A368602 Triangle begins: %e A368602 1 %e A368602 0 1 %e A368602 0 1 1 %e A368602 0 5 3 1 %e A368602 0 79 33 7 1 %e A368602 0 3377 1071 161 15 1 %e A368602 ... %e A368602 Row n = 3 counts the following set-systems: %e A368602 {{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}} %e A368602 {{1},{1,2},{2,3}} {{1},{2},{2,3}} %e A368602 {{1},{1,3},{2,3}} {{1},{2},{1,2,3}} %e A368602 {{1},{1,2},{1,2,3}} %e A368602 {{1},{1,3},{1,2,3}} %t A368602 Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Union@@Cases[#,{_}]==Range[k] && Length[Select[Tuples[#],UnsameQ@@#&]]==1&]], {n,0,3},{k,0,n}] %Y A368602 Column k = n-1 is A000225 = A058877(n)/n. %Y A368602 Column k = 1 is A134531 (up to sign) or A003025(n)/n, non-fixed A350415. %Y A368602 For any choice of k sinks we get A361718. %Y A368602 A058891 counts set-systems, unlabeled A000612. %Y A368602 A059201 counts covering T_0 set-systems. %Y A368602 A323818 counts covering connected set-systems, unlabeled A323819. %Y A368602 Cf. A000169, A003024, A003087, A082402, A088957, A334282, A367862, A367904, A367908, A368600, A368601. %K A368602 nonn,tabl %O A368602 0,8 %A A368602 _Gus Wiseman_, Jan 02 2024 %E A368602 More terms from _Alois P. Heinz_, Jan 04 2024