This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368603 #5 Jan 08 2024 14:30:42 %S A368603 1,3,5,9,11,13,15,17,25,27,29,31,33,39,41,43,45,47,51,55,59,65,67,73, %T A368603 75,79,81,83,85,87,93,99,101,109,113,117,121,123,125,127,129,135,137, %U A368603 139,141,143,145,149,153,155,157,163,165,167,169,177,179,181,187 %N A368603 Products of odd primes of squarefree index. MM-numbers of set multipartitions. %C A368603 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. %C A368603 A set multipartition is a finite multiset of finite nonempty sets. %e A368603 The terms together with the corresponding set multipartitions begin: %e A368603 1: {} %e A368603 3: {{1}} %e A368603 5: {{2}} %e A368603 9: {{1},{1}} %e A368603 11: {{3}} %e A368603 13: {{1,2}} %e A368603 15: {{1},{2}} %e A368603 17: {{4}} %e A368603 25: {{2},{2}} %e A368603 27: {{1},{1},{1}} %e A368603 29: {{1,3}} %e A368603 31: {{5}} %e A368603 33: {{1},{3}} %e A368603 39: {{1},{1,2}} %e A368603 41: {{6}} %e A368603 43: {{1,4}} %e A368603 45: {{1},{1},{2}} %t A368603 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A368603 Select[Range[100],OddQ[#]&&And@@SquareFreeQ/@prix[#]&] %Y A368603 Odd case of A302478. %Y A368603 Products of odd terms of A302491. %Y A368603 A049311 counts non-isomorphic set multipartitions, strict A283877. %Y A368603 A050320 counts set multipartitions of prime indices. %Y A368603 A056239 adds up prime indices, row sums of A112798. %Y A368603 A089259 counts set multipartitions of integer partitions. %Y A368603 A116540 counts set multipartitions covering an initial interval by weight. %Y A368603 A368533 lists numbers with squarefree binary indices. %Y A368603 Cf. A000040, A000720, A001222, A005117, A006450, A076610, A270995, A296119, A302242, A302590, A339113. %K A368603 nonn %O A368603 1,2 %A A368603 _Gus Wiseman_, Jan 08 2024