This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368604 #11 May 02 2024 15:15:16 %S A368604 0,1,0,2,2,1,3,4,4,2,4,6,7,6,4,5,8,10,10,9,6,6,10,13,14,14,12,9,7,12, %T A368604 16,18,19,18,16,12,8,14,19,22,24,24,23,20,16,9,16,22,26,29,30,30,28, %U A368604 25,20,10,18,25,30,34,36,37,36,34,30,25,11,20,28,34,39 %N A368604 Triangular array T, read by rows: T(n,k) = number of sums |x-y|+|y-z| = k, where x,y,z are in {1,2,...,n} and x < y and y > z. %C A368604 The difference sequence of the k-th column is (k), for k >= 1. %e A368604 First nine rows: %e A368604 0 %e A368604 1 0 %e A368604 2 2 1 %e A368604 3 4 4 2 %e A368604 4 6 7 6 4 %e A368604 5 8 10 10 9 6 %e A368604 6 10 13 14 14 12 9 %e A368604 7 12 16 18 19 18 16 12 %e A368604 8 14 19 22 24 24 23 20 16 %e A368604 For n=3, there are 5 triples (x,y,z) having x < y and y > z: %e A368604 121: |x-y| + |y-z| = 2 %e A368604 131: |x-y| + |y-z| = 4 %e A368604 132: |x-y| + |y-z| = 3 %e A368604 231: |x-y| + |y-z| = 3 %e A368604 232: |x-y| + |y-z| = 2 %e A368604 so that row 1 of the array is (2,2,1), representing two 2s, two 3s, and one 4. %t A368604 t1[n_] := t1[n] = Tuples[Range[n], 3]; %t A368604 t[n_] := t[n] = Select[t1[n], #[[1]] < #[[2]] > #[[3]] &]; %t A368604 a[n_, k_] := Select[t[n], Abs[#[[1]] - #[[2]]] + Abs[#[[2]] - #[[3]]] == k &]; %t A368604 u = Table[Length[a[n, k]], {n, 1, 15}, {k, 2, n + 1}]; %t A368604 v = Flatten[u] %t A368604 Column[Table[Length[a[n, k]], {n, 1, 15}, {k, 2, n + 1}]] %Y A368604 Cf. A000027 (column 1), A002620 (T(n,n)), A002717 (row sums), A368434, A368437, A368515, A368516, A368517, A368518, A368519, A368521, A368522. %K A368604 nonn,tabl %O A368604 1,4 %A A368604 _Clark Kimberling_, Jan 22 2024