This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368630 #12 Jan 04 2024 09:00:45 %S A368630 1,1,7,136,4933,275536,21309139,2137447936,266227499017, %T A368630 39924910381312,7045914488563711,1437809941831499776, %U A368630 334581893955246072205,87792555944973238718464,25735892905876612366925515,8363132129019712402301648896,2992768723058093966270081891089 %N A368630 Expansion of e.g.f. A(x) satisfying A(x/A(x)^2) = exp(x*A(x)). %C A368630 Conjecture: a(n) == 1 (mod 3) for n >= 0. %C A368630 Conjecture: a(2*n) == 1 (mod 2) for n >= 0. %C A368630 Conjecture: a(2*n+1) == 0 (mod 2) for n >= 1. %H A368630 Paul D. Hanna, <a href="/A368630/b368630.txt">Table of n, a(n) for n = 0..200</a> %F A368630 E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas. %F A368630 (1) A(x/A(x)^2) = exp(x*A(x)). %F A368630 (2) A(x) = exp(x*B(x)^3) where B(x) = A(x*B(x)^2) = ( (1/x)*Series_Reversion(x/A(x)^2) )^(1/2). %F A368630 (3) A(x/C(x)^3) = exp(x) where C(x) = A(x/C(x)) = x/Series_Reversion(x*A(x)). %e A368630 E.g.f.: A(x) = 1 + x + 7*x^2/2! + 136*x^3/3! + 4933*x^4/4! + 275536*x^5/5! + 21309139*x^6/6! + 2137447936*x^7/7! + 266227499017*x^8/8! + ... %e A368630 where A(x/A(x)^2) = exp(x*A(x)) and %e A368630 exp(x*A(x)) = 1 + x + 3*x^2/2! + 28*x^3/3! + 653*x^4/4! + 28096*x^5/5! + 1833367*x^6/6! + 162874048*x^7/7! + ... %e A368630 Also, %e A368630 A(x) = exp(x*B(x)^3) where B(x) = A(x*B(x)^2) begins %e A368630 B(x) = 1 + x + 11*x^2/2! + 292*x^3/3! + 13149*x^4/4! + 861376*x^5/5! + 75412591*x^6/6! + 8365301568*x^7/7! + ... %e A368630 B(x)^2 = 1 + 2*x + 24*x^2/2! + 650*x^3/3! + 29360*x^4/4! + 1918482*x^5/5! + 167206144*x^6/6! + ... %e A368630 B(x)^3 = 1 + 3*x + 39*x^2/2! + 1080*x^3/3! + 49029*x^4/4! + 3199728*x^5/5! + 277840179*x^6/6! + ... %e A368630 Further, %e A368630 A(x/C(x)^3) = exp(x) where C(x) = A(x/C(x)) begins %e A368630 C(x) = 1 + x + 5*x^2/2! + 85*x^3/3! + 2889*x^4/4! + 154441*x^5/5! + 11527693*x^6/6! + 1120674717*x^7/7! + ... %e A368630 C(x)^3 = 1 + 3*x + 21*x^2/2! + 351*x^3/3! + 11337*x^4/4! + 582843*x^5/5! + 42300765*x^6/6! + ... %o A368630 (PARI) {a(n) = my(A=1+x); for(i=0,n, A = exp( x*((1/x)*serreverse( x/(A^2 + x*O(x^n)) ))^(3/2) )); n!*polcoeff(A,n)} %o A368630 for(n=0,20, print1(a(n),", ")) %Y A368630 Cf. A368631, A368632, A144682, A144683, A367385. %K A368630 nonn %O A368630 0,3 %A A368630 _Paul D. Hanna_, Jan 02 2024