cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368637 Primes p such that the sum of cubes of the 4 consecutive primes starting with p is twice a prime.

Original entry on oeis.org

1229, 3041, 3719, 3793, 4969, 5107, 6217, 6317, 6661, 7517, 8807, 8963, 9011, 9883, 10093, 10247, 11311, 12983, 13331, 15443, 17839, 19801, 21149, 21727, 22639, 23417, 23629, 24223, 24709, 25349, 26813, 27329, 27691, 28123, 28711, 28807, 28837, 29453, 29587, 30161, 31327, 32069, 34421, 35267
Offset: 1

Views

Author

Robert Israel, Jan 01 2024

Keywords

Comments

Primes p such that A001222(A133525(A000720(p))) = 2.

Examples

			a(3) = 3719 is a term because 3719, 3727, 3733, 3739 are 4 consecutive primes with 3719^3 + 3727^3 + 3733^3 + 3739^3 = 2 * 103749725899 with 103749725899 prime.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # for terms up to prime(N)
    P:= [seq(ithprime(i),i=1..N+3)]:
    P3:= map(`^`,[0,op(P)],3):
    S:= ListTools:-PartialSums(P3):
    R:= [seq](S[i+4]-S[i],i=1..N):
    P[select(i -> isprime(R[i]/2), [$3..N])];
  • Mathematica
    lst[maxN_] := Module[{p = 2, i = 1, l = {}}, Monitor[While[i <= maxN, If[PrimeQ[Total[Take[Prime[Range[PrimePi[p], PrimePi[p] + 3]], 4]^3]/2], AppendTo[l, p]; i++; ]; p = NextPrime[p]; ], i]; l];
    lst[44] (* Robert P. P. McKone, Jan 02 2024 *)