This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368638 #7 Jan 06 2024 09:20:39 %S A368638 1,2,5,12,25,48,83,136,211,314,449,626,849,1130,1475,1892,2389,2982, %T A368638 3677,4492,5435,6518,7751,9156,10741,12526,14523,16750,19219,21958, %U A368638 24975,28300,31949,35942,40295,45032,50165,55730,61745,68234,75213,82722,90773,99408 %N A368638 a(n) is the number of triangular partitions whose Young diagram fits inside a square of side n. %C A368638 Equivalently, a(n) is the number of triangular subpartitions of the staircase partition (n, n-1, ..., 1). %H A368638 Sergi Elizalde and Alejandro B. Galván, <a href="https://arxiv.org/abs/2312.16353">Triangular partitions: enumeration, structure, and generation</a>, arXiv:2312.16353 [math.CO], (2023). %F A368638 a(n) = 1 + Sum_{i=1..n} binomial(n-i+2,2)*phi(i). %o A368638 (MATLAB) %o A368638 % subpart(n) := a(n-1). %o A368638 nmax = 44; %o A368638 for n = 1 : nmax %o A368638 subpart(n) = 1; %o A368638 for i = 1 : n %o A368638 subpart(n) = subpart(n) + (n - i + 1)*(n - i)*eulerPhi(i)/2; %o A368638 end %o A368638 end %Y A368638 The number of triangular partitions of size n is in A352882. %K A368638 nonn %O A368638 0,2 %A A368638 _Alejandro B. Galván_, Jan 01 2024