This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368644 #10 Sep 27 2024 07:58:10 %S A368644 2,8,5,0,5,4,3,5,9,0,2,3,7,5,2,5,7,9,5,4,1,7,4,3,0,7,2,4,9,8,5,4,8,4, %T A368644 2,1,1,9,6,8,2,2,1,7,9,4,7,1,8,7,7,7,6,3,8,8,3,4,5,0,8,6,2,8,6,1,6,6, %U A368644 2,2,3,0,1,2,7,3,8,6,0,5,4,9,8,9,4,9,1,7,2,9,0,2,3,2,5,9,9,4,5,7,7,8,4,5,5 %N A368644 Decimal expansion of the Mertens constant M(3,2) arising in the formula for the sum of reciprocals of primes p == 2 (mod 3). %C A368644 Data were taken from Languasco and Zaccagnini's web site. %D A368644 Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 204. %H A368644 Alessandro Languasco and Alessandro Zaccagnini, <a href="https://doi.org/10.1080/10586458.2010.10390624">Computing the Mertens and Meissel-Mertens constants for sums over arithmetic progressions</a>, Experimental Mathematics, Vol. 19, No. 3 (2010), pp. 279-284; <a href="https://arxiv.org/abs/0906.2132">arXiv preprint</a>, arXiv:0906.2132 [math.NT], 2009. %H A368644 Alessandro Languasco and Alessandro Zaccagnini, <a href="https://www.dei.unipd.it/~languasco/Mertens-comput.html">Computation of the Mertens and Meissel-Mertens constants for sums over arithmetic progressions</a>. %F A368644 Equals A086241 - A161529. %F A368644 Equals lim_{x->oo} (Sum_{primes p == 2 (mod 3), p <= x} 1/p - log(log(x))/2). %F A368644 Equals gamma/2 - log(sqrt(Pi/3)/(2*K_3)) + Sum_{prime p == 2 (mod 3)} (log(1-1/p) + 1/p), where gamma is Euler's constant (A001620) and K_3 = A301429. %e A368644 0.28505435902375257954174307249854842119682217947187... %Y A368644 Cf. A001620, A003627, A077761, A086241, A161529, A301429, A368645, A368646. %K A368644 nonn,cons %O A368644 0,1 %A A368644 _Amiram Eldar_, Jan 02 2024