cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368644 Decimal expansion of the Mertens constant M(3,2) arising in the formula for the sum of reciprocals of primes p == 2 (mod 3).

This page as a plain text file.
%I A368644 #10 Sep 27 2024 07:58:10
%S A368644 2,8,5,0,5,4,3,5,9,0,2,3,7,5,2,5,7,9,5,4,1,7,4,3,0,7,2,4,9,8,5,4,8,4,
%T A368644 2,1,1,9,6,8,2,2,1,7,9,4,7,1,8,7,7,7,6,3,8,8,3,4,5,0,8,6,2,8,6,1,6,6,
%U A368644 2,2,3,0,1,2,7,3,8,6,0,5,4,9,8,9,4,9,1,7,2,9,0,2,3,2,5,9,9,4,5,7,7,8,4,5,5
%N A368644 Decimal expansion of the Mertens constant M(3,2) arising in the formula for the sum of reciprocals of primes p == 2 (mod 3).
%C A368644 Data were taken from Languasco and Zaccagnini's web site.
%D A368644 Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 204.
%H A368644 Alessandro Languasco and Alessandro Zaccagnini, <a href="https://doi.org/10.1080/10586458.2010.10390624">Computing the Mertens and Meissel-Mertens constants for sums over arithmetic progressions</a>, Experimental Mathematics, Vol. 19, No. 3 (2010), pp. 279-284; <a href="https://arxiv.org/abs/0906.2132">arXiv preprint</a>, arXiv:0906.2132 [math.NT], 2009.
%H A368644 Alessandro Languasco and Alessandro Zaccagnini, <a href="https://www.dei.unipd.it/~languasco/Mertens-comput.html">Computation of the Mertens and Meissel-Mertens constants for sums over arithmetic progressions</a>.
%F A368644 Equals A086241 - A161529.
%F A368644 Equals lim_{x->oo} (Sum_{primes p == 2 (mod 3), p <= x} 1/p - log(log(x))/2).
%F A368644 Equals gamma/2 - log(sqrt(Pi/3)/(2*K_3)) + Sum_{prime p == 2 (mod 3)} (log(1-1/p) + 1/p), where gamma is Euler's constant (A001620) and K_3 = A301429.
%e A368644 0.28505435902375257954174307249854842119682217947187...
%Y A368644 Cf. A001620, A003627, A077761, A086241, A161529, A301429, A368645, A368646.
%K A368644 nonn,cons
%O A368644 0,1
%A A368644 _Amiram Eldar_, Jan 02 2024