cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368645 Decimal expansion of the Mertens constant M(4,1) arising in the formula for the sum of reciprocals of primes p == 1 (mod 4) (negated).

This page as a plain text file.
%I A368645 #10 Sep 27 2024 08:04:58
%S A368645 2,8,6,7,4,2,0,5,6,2,2,6,1,7,5,1,9,8,6,5,3,9,4,5,1,4,1,4,3,9,4,2,3,8,
%T A368645 5,7,3,6,4,2,0,4,3,6,6,2,4,6,9,3,8,9,2,0,9,5,7,9,7,8,1,8,2,4,6,0,1,4,
%U A368645 9,1,6,6,1,8,7,2,5,7,9,5,0,4,5,5,3,7,8,4,9,9,7,9,7,7,7,8,3,4,7,1,8,8,9,2,7
%N A368645 Decimal expansion of the Mertens constant M(4,1) arising in the formula for the sum of reciprocals of primes p == 1 (mod 4) (negated).
%C A368645 Data were taken from Languasco and Zaccagnini's web site.
%D A368645 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 95.
%D A368645 Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 205.
%H A368645 Alessandro Languasco and Alessandro Zaccagnini, <a href="https://doi.org/10.1080/10586458.2010.10390624">Computing the Mertens and Meissel-Mertens constants for sums over arithmetic progressions</a>, Experimental Mathematics, Vol. 19, No. 3 (2010), pp. 279-284; <a href="https://arxiv.org/abs/0906.2132">arXiv preprint</a>, arXiv:0906.2132 [math.NT], 2009.
%H A368645 Alessandro Languasco and Alessandro Zaccagnini, <a href="https://www.dei.unipd.it/~languasco/Mertens-comput.html">Computation of the Mertens and Meissel-Mertens constants for sums over arithmetic progressions</a>.
%F A368645 Equals A368646 - A086239.
%F A368645 Equals lim_{x->oo} (Sum_{primes p == 1 (mod 4), p <= x} 1/p - log(log(x))/2).
%F A368645 Equals gamma/2 - log(4*K_1/sqrt(Pi)) + Sum_{prime p == 1 (mod 4)} (log(1-1/p) + 1/p), where gamma is Euler's constant (A001620) and K_1 is Landau-Ramanujan constant (A064533).
%e A368645 -0.28674205622617519865394514143942385736420436624693...
%Y A368645 Cf. A001620, A002144, A064533, A077761, A086239, A161529, A368644, A368646.
%K A368645 nonn,cons
%O A368645 0,1
%A A368645 _Amiram Eldar_, Jan 02 2024