A368651 Numbers k such that 2^sigma(k) - k is a prime.
3, 5, 17, 49, 53, 185, 503, 1301, 1689, 1797, 5929, 14747, 20433, 29903, 42137, 64763
Offset: 1
Examples
5 is in the sequence because 2^sigma(5)-5 = 2^6-5 = 59 is prime.
Programs
-
Magma
[n: n in[1..10000] | IsPrime((2^SumOfDivisors(n)) - n)];
-
Mathematica
a[n_] := Select[Range@ n, PrimeQ[2^DivisorSigma[1, #] - #] &]; a[20000] DeleteCases[ParallelTable[If[PrimeQ[2^DivisorSigma[1,k]-k],k,n],{k,1,10^4}],n]
Extensions
a(16) from J.W.L. (Jan) Eerland, Jan 25 2024
Comments