cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368657 Number of cycles in an n X n grid where the cycle cannot touch itself orthogonally or diagonally and must contain at least one inside point.

This page as a plain text file.
%I A368657 #23 Jan 31 2024 08:06:46
%S A368657 0,0,1,13,167,2685,50391,1188935,41749885,2645126227,341643017303,
%T A368657 82472721488013,31312529515504513,17381378412860375479,
%U A368657 14419291783372365769995,18997663191047558313462721
%N A368657 Number of cycles in an n X n grid where the cycle cannot touch itself orthogonally or diagonally and must contain at least one inside point.
%C A368657 For n > 1, n < 5, this shares the sequence with n-1 in A140517. Cycles are not reduced by symmetry (rotation, translation or mirroring). The grid can only have one cycle.
%H A368657 Cracking The Cryptic, <a href="https://www.youtube.com/watch?v=hgx0Rso7JNs">The Trouble With Circular Reasoning Is.... (!)</a>, YouTube.
%H A368657 Jimmy MÃ¥rdell, <a href="https://github.com/Yarin78/puzzles/blob/master/src/puzzles/grid_loop.py">Python code used for generation of the sequence</a>.
%e A368657 For n = 4, there are 13 valid cycles:
%e A368657 .
%e A368657   1      2      3      4
%e A368657   ###.   .###   ....   ....
%e A368657   #.#.   .#.#   .###   ###.
%e A368657   ###.   .###   .#.#   #.#.
%e A368657   ....   ....   .###   ###.
%e A368657 .
%e A368657   5      6      7     8
%e A368657   ####   ....   ###.  .###
%e A368657   #..#   ####   #.#.  .#.#
%e A368657   ####   #..#   #.#.  .#.#
%e A368657   ....   ####   ###.  .###
%e A368657 .
%e A368657   9      10     11    12
%e A368657   .###   ###.   ####  ####
%e A368657   ##.#   #.##   #..#  #..#
%e A368657   #..#   #..#   #.##  ##.#
%e A368657   ####   ####   ###.  .###
%e A368657 .
%e A368657   13
%e A368657   ####
%e A368657   #..#
%e A368657   #..#
%e A368657   ####
%Y A368657 Cf. A140517, A297664.
%K A368657 nonn,more
%O A368657 1,4
%A A368657 _Niklas Gustavsson_, Jan 02 2024