cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368682 Products of primorials that are perfect powers but not prime powers.

This page as a plain text file.
%I A368682 #7 Jan 03 2024 03:37:27
%S A368682 36,144,216,576,900,1296,1728,2304,3600,5184,7776,9216,13824,14400,
%T A368682 20736,27000,32400,36864,44100,46656,57600,82944,110592,129600,147456,
%U A368682 176400,186624,216000,230400,248832,279936,331776,373248,518400,589824,705600,746496,810000
%N A368682 Products of primorials that are perfect powers but not prime powers.
%C A368682 Intersection of A025487 and A131605.
%C A368682 Proper subset of A286708.
%C A368682 Contains A365308 (perfect powers of composite primorials) and A368508 (perfect powers of composite superprimorials).
%C A368682 These numbers are perfect powers of some smaller product of primorials.
%H A368682 Michael De Vlieger, <a href="/A368682/b368682.txt">Table of n, a(n) for n = 1..10000</a>
%F A368682 This sequence is { A368681 \ A000079 }.
%e A368682 b(n) = A025487(n).
%e A368682 a(1) = b(11) = 36 = 6^2 = b(4)^2,
%e A368682 a(2) = b(19) = 144 = 12^2 = b(6)^2,
%e A368682 a(3) = b(23) = 216 = 6^3 = b(4)^3,
%e A368682 a(4) = b(33) = 576 = 24^2 = b(8)^2,
%e A368682 a(5) = b(38) = 900 = 30^2 = b(9)^2, etc.
%t A368682 Select[Range[36, 2^18, 2], And[Union@ Differences@ PrimePi@ #1 == {1}, AllTrue[Union@ Differences@ #2, # <= 0 &], GCD @@ #2 > 1] & @@ Transpose@ FactorInteger[#] &]
%Y A368682 Cf. A000079, A000961, A001597, A002110, A025487, A131605, A286708, A365308, A368508, A368681.
%K A368682 nonn
%O A368682 1,1
%A A368682 _Michael De Vlieger_, Jan 02 2024