cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368691 Primes p such that p + 4 * q is prime, where q is the next prime after p.

This page as a plain text file.
%I A368691 #9 Jan 12 2024 22:47:12
%S A368691 3,23,31,73,83,157,167,211,251,353,373,443,467,503,509,523,541,571,
%T A368691 647,727,751,941,947,977,1033,1069,1123,1201,1259,1361,1381,1493,1511,
%U A368691 1531,1553,1613,1759,1811,2011,2207,2333,2351,2383,2399,2417,2543,2777,2927,3061,3067,3083,3301,3331,3511
%N A368691 Primes p such that p + 4 * q is prime, where q is the next prime after p.
%H A368691 Robert Israel, <a href="/A368691/b368691.txt">Table of n, a(n) for n = 1..10000</a>
%e A368691 a(3) = 31 is a term because 31 is prime, the next prime is 37, and 31 + 4 * 37 = 179 is prime.
%p A368691 filter:= proc(p) local q;
%p A368691   if not isprime(p) then return false fi;
%p A368691   q:= nextprime(p);
%p A368691   isprime(p+4*q)
%p A368691 end proc:
%p A368691 select(filter, [seq(i,i=3..10000,2)]);
%t A368691 f[p_] := Module[{q}, If[!PrimeQ[p], Return[False]]; q = NextPrime[p]; PrimeQ[p + 4*q]];Select[Range[3,3511, 2],f] (* _James C. McMahon_, Jan 03 2024 *)
%Y A368691 Cf. A175914.
%K A368691 nonn
%O A368691 1,1
%A A368691 _Zak Seidov_ and _Robert Israel_, Jan 03 2024