This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368704 #25 Mar 25 2024 06:39:22 %S A368704 0,9,221,11021,1333349,225450221,65155115009,23520996509141, %T A368704 12442607161209161,10464232622576957201,10056127550296456854221, %U A368704 13766838616355849433396389,23142055714094182897602595769,42789661015360144177667200022669,94522361182930558488466844910827309,265513312562851938794103367354849976069 %N A368704 a(n) is the greatest integer k whose arithmetic derivative is equal to the n-th primorial, and 0 if no such k exists. %C A368704 a(n) is the greatest integer k for which A003415(k) = A002110(n), and 0 if no such k exists. %C A368704 See also comments in A116979. %H A368704 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a> %H A368704 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A368704 For n >= 1, A368703(n) <= a(n) <= A369059(n). %F A368704 For n > 1, A003415(a(n)) = A002110(n). %F A368704 For n > 1, a(n) = p*q, where p, q are primes, p+q = A002110(n) and q >= p and q - p is minimal. - _David A. Corneth_, Jan 17 2024 [This depends on Goldbach's conjecture being valid, at least on primorials, for which there is strong empirical evidence though.] - _Antti Karttunen_, Jan 19 2024 %e A368704 a(1) = 0 as there are no number k such that A003415(k) = A002110(1) = 2. %e A368704 a(3) = 221 as A003415(221) = A003415(13*17) = A003415(13)*17 + 13*A003415(17) = 1*17 + 13*1 = 30 which is A002110(3) and no k>221 has arithmetic derivative 30. - _David A. Corneth_, Jan 17 2024 %o A368704 (PARI) a(n) = {if(n==1,return(0)); pr = vecprod(primes(n)); prover2 = pr/2; forprime(p = prover2, oo, if(isprime(pr - p), return(p*(pr-p))))} \\ _David A. Corneth_, Jan 17 2024 %Y A368704 Cf. A002110, A003415, A116979, A351029, A368703, A369059 (an upper bound). %Y A368704 Cf. also A369244. %K A368704 nonn %O A368704 1,2 %A A368704 _Antti Karttunen_, Jan 16 2024 %E A368704 More terms from _David A. Corneth_, Jan 17 2024