cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368710 The maximal exponent in the prime factorization of the powerful numbers.

This page as a plain text file.
%I A368710 #15 Mar 29 2025 00:23:10
%S A368710 0,2,3,2,4,2,3,5,2,2,6,3,4,2,3,2,3,7,4,2,2,3,3,2,5,8,5,2,4,3,2,3,4,4,
%T A368710 2,2,3,9,2,6,4,4,3,2,6,4,5,2,5,2,2,3,5,3,10,2,3,7,2,2,4,3,3,3,2,3,2,2,
%U A368710 5,6,2,6,2,3,2,4,5,4,4,11,2,7,3,2,8,3,4
%N A368710 The maximal exponent in the prime factorization of the powerful numbers.
%H A368710 Amiram Eldar, <a href="/A368710/b368710.txt">Table of n, a(n) for n = 1..10000</a>
%H A368710 Rafael Jakimczuk, <a href="https://doi.org/10.12988/imf.2018.8739">Generalizations of the Niven constant and the Feller-Tornier constant</a>, International Mathematical Forum, Vol. 13, No. 9 (2018), pp. 415-425.
%F A368710 a(n) = A051903(A001694(n)).
%F A368710 a(n) >= 2 for n >= 2.
%F A368710 Sum_{a(n)<=x} = D_{2,1} * sqrt(x) + O(sqrt(x)), where D_{2,1} = (6/Pi^2) * (2 + Sum_{k>=1} (A051903(k)+2)/(sqrt(k) * A048250(k))) (Jakimczuk, 2018; Theorem 2.1 and Remark 2.3).
%F A368710 Asymptotic mean (consequence of the formula above): Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = D_{2,1} * zeta(3)/zeta(3/2) = D_{2,1} / A090699.
%F A368710 The sum in the formula for D_{2,1} converges slowly: for k up to 10^8, 10^9 and 10^10 the sums are 14.845..., 14.908... and 14.938..., respectively. Thus, a lower bound for the value of this mean, calculated by summing over k=1..10^10, is 4.738... .
%t A368710 s[n_] := If[n == 1, 0, Max @@ Last /@ FactorInteger[n]]; s /@ Select[Range[3000], # == 1 || Min[FactorInteger[#][[;;, 2]]] > 1 &]
%t A368710 (* or *)
%t A368710 f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[n == 1, 0, If[Min[e] > 1, Max[e], Nothing]]]; Array[f, 3000]
%o A368710 (PARI) lista(kmax) = {my(e); for(k = 1, kmax, e = factor(k)[,2]; if(k == 1, print1(0, ", "), if(vecmin(e) > 1, print1(vecmax(e), ", "))));}
%Y A368710 Cf. A001694, A033150, A048250, A051903, A059956, A090699.
%Y A368710 Similar sequences: A368711, A368712, A368713.
%K A368710 nonn,easy
%O A368710 1,2
%A A368710 _Amiram Eldar_, Jan 04 2024