cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368711 The maximal exponent in the prime factorization of the exponentially odd numbers (A268335).

This page as a plain text file.
%I A368711 #11 Apr 26 2025 21:36:10
%S A368711 0,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,3,1,3,1,1,1,5,1,1,1,1,1,1,3,1,1,1,
%T A368711 1,1,1,1,3,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,
%U A368711 5,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1
%N A368711 The maximal exponent in the prime factorization of the exponentially odd numbers (A268335).
%C A368711 Differs from A368472 at n = 1, 154, 610, 707, 762, ... .
%H A368711 Amiram Eldar, <a href="/A368711/b368711.txt">Table of n, a(n) for n = 1..10000</a>
%F A368711 a(n) = A051903(A268335(n)).
%F A368711 a(n) is odd for n >= 2.
%F A368711 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + 2 * Sum_{k>=1} (1 - Product_{p prime} (1 - 1/(p^(2*k-1)*(p^2+p-1)))) = 1.34877064483679975726... .
%t A368711 f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, OddQ], Max @@ e, Nothing]]; f[1] = 0; Array[f, 150]
%o A368711 (PARI) lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = factor(k)[,2]; if(vecprod(e)%2, print1(vecmax(e), ", ")));}
%Y A368711 Cf. A033150, A051903, A268335, A368472.
%Y A368711 Similar sequences: A368710, A368712, A368713.
%K A368711 nonn,easy
%O A368711 1,7
%A A368711 _Amiram Eldar_, Jan 04 2024