cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368712 The maximal exponent in the prime factorization of the cubefree numbers.

This page as a plain text file.
%I A368712 #16 Aug 12 2024 16:35:38
%S A368712 0,1,1,2,1,1,1,2,1,1,2,1,1,1,1,2,1,2,1,1,1,2,1,2,1,1,1,1,1,1,2,1,1,1,
%T A368712 1,1,1,2,2,1,1,2,2,1,2,1,1,1,1,1,2,1,1,2,1,1,1,2,1,1,1,1,1,2,2,1,1,1,
%U A368712 1,1,2,1,1,1,1,2,1,2,1,1,1,1,2,2,2,1,1
%N A368712 The maximal exponent in the prime factorization of the cubefree numbers.
%C A368712 The asymptotic density of occurrences of 1 is zeta(3)/zeta(2) = 0.730762... (A253905), and the asymptotic density of occurrences of 2 is 1 - zeta(3)/zeta(2) = 0.269237... .
%H A368712 Amiram Eldar, <a href="/A368712/b368712.txt">Table of n, a(n) for n = 1..10000</a>
%F A368712 a(n) = A051903(A004709(n)).
%F A368712 a(n) = 2 - A008966(A004709(n)) for n >= 2.
%F A368712 Except for n = 1, a(n) = 1 or 2.
%F A368712 a(n) = 1 if and only if A004709(n) is squarefree (A005117).
%F A368712 a(n) = 2 if and only if A004709(n) > 1 and is nonsquarefree (A013929), i.e., A004709(n) is in A067259.
%F A368712 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 - zeta(3)/zeta(2) = 2 - A253905 = 1.269237030598... .
%t A368712 s[n_] := If[n == 1, 0, Max @@ Last /@ FactorInteger[n]]; s /@ Select[Range[100], Max[FactorInteger[#][[;; , 2]]] < 3 &]
%t A368712 (* or *)
%t A368712 f[n_] := Module[{e = Max @@ FactorInteger[n][[;; , 2]]}, If[e < 3, e, Nothing]]; f[1] = 0; Array[f, 100]
%o A368712 (PARI) lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = vecmax(factor(k)[,2]); if(e < 3, print1(e, ", ")));}
%o A368712 (Python)
%o A368712 from sympy import mobius, integer_nthroot, factorint
%o A368712 def A368712(n):
%o A368712     def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
%o A368712     m, k = n, f(n)
%o A368712     while m != k:
%o A368712         m, k = k, f(k)
%o A368712     return max(factorint(m).values(),default=0) # _Chai Wah Wu_, Aug 12 2024
%Y A368712 Cf. A004709, A005117, A008966, A013929, A033150, A051903, A067259.
%Y A368712 Cf. A002117, A013661, A253905.
%Y A368712 Similar sequences: A368710, A368711, A368713.
%K A368712 nonn,easy
%O A368712 1,4
%A A368712 _Amiram Eldar_, Jan 04 2024