cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368713 The maximal exponent in the prime factorization of the nonsquarefree numbers.

Original entry on oeis.org

2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 2, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 3, 2, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 2, 3, 3, 4, 2, 2, 3, 2, 2, 3, 2, 7, 2, 3, 3, 2, 4, 2, 2, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 2, 2, 4, 2, 3, 2, 3, 6, 2, 2, 3, 2, 2, 4, 2, 3, 2, 5, 2, 2, 3, 2, 2, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 04 2024

Keywords

Comments

The terms of A051903 that are larger than 1.

Crossrefs

Similar sequences: A368710, A368711, A368712.

Programs

  • Mathematica
    s[n_] := Max @@ Last /@ FactorInteger[n]; s /@ Select[Range[250], !SquareFreeQ[#] &]
    (* or *)
    f[n_] := Module[{e = Max @@ FactorInteger[n][[;; , 2]]}, If[e > 1, e, Nothing]]; Array[f, 250]
  • PARI
    lista(kmax) = {my(e); for(k = 2, kmax, e = vecmax(factor(k)[,2]); if(e > 1, print1(e, ", ")));}

Formula

a(n) = A051903(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (c * zeta(2) - 1)/(zeta(2) - 1) = 2.798673520766..., where c = 1.705211... is Niven's constant (A033150).