This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368718 #23 Jul 18 2025 12:01:02 %S A368718 0,1,30,153,412,1065,1386,7105,-24072,275697,-2656970,29387721, %T A368718 -352403820,4581620953,-64142155518,962133092145,-15394128425744, %U A368718 261700184657505,-4710603321945522,89501463119441017,-1790029262385620340,37590614510102111241 %N A368718 a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * k^5 / k!. %C A368718 In general, for m >=0, Sum_{k=0..n} (-1)^(n-k) * k^m / k! ~ A000587(m) * (-1)^n * exp(-1). - _Vaclav Kotesovec_, Jul 18 2025 %H A368718 Robert Israel, <a href="/A368718/b368718.txt">Table of n, a(n) for n = 0..448</a> %H A368718 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>. %H A368718 Wikipedia, <a href="https://en.wikipedia.org/wiki/Touchard_polynomials">Touchard polynomials</a> %F A368718 a(0) = 0; a(n) = -n*a(n-1) + n^5. %F A368718 E.g.f.: B_5(x) * exp(x) / (1+x), where B_n(x) = Bell polynomials. %F A368718 a(n) ~ -2*(-1)^n * exp(-1) * n!. - _Vaclav Kotesovec_, Jul 18 2025 %p A368718 f:= proc(n) option remember; %p A368718 - n*procname(n-1)+n^5 %p A368718 end proc: %p A368718 f(0):= 0: %p A368718 seq(f(i),i=0..21); # _Robert Israel_, May 13 2025 %t A368718 Table[-5*n + 3*n^3 + n^4 - 2*(-1)^n*n*Subfactorial[n-1], {n, 0, 20}] (* _Vaclav Kotesovec_, Jul 18 2025 *) %o A368718 (PARI) my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, 5, stirling(5, k, 2)*x^k)*exp(x)/(1+x)))) %Y A368718 Column k=5 of A368724. %Y A368718 Cf. A048993, A368587, A368719. %K A368718 sign %O A368718 0,3 %A A368718 _Seiichi Manyama_, Jan 04 2024