This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368727 #12 Jan 11 2024 20:04:20 %S A368727 1,1,2,2,5,6,15,21,49,82,184,341,766,1530,3428,7249,16394,36009,82492, %T A368727 186485,433096,1001495,2358182,5554644,13255532,31718030,76656602, %U A368727 185982207,454889643,1117496012,2764222322,6868902152,17172601190 %N A368727 Number of non-isomorphic connected multiset partitions of weight n into singletons or strict pairs. %H A368727 Andrew Howroyd, <a href="/A368727/b368727.txt">Table of n, a(n) for n = 0..50</a> %F A368727 Inverse Euler transform of A339888. %e A368727 Non-isomorphic representatives of the a(1) = 1 through a(6) = 15 multiset partitions: %e A368727 {1} {12} {2}{12} {12}{12} {2}{12}{12} {12}{12}{12} %e A368727 {1}{1} {1}{1}{1} {13}{23} {2}{13}{23} {12}{13}{23} %e A368727 {1}{2}{12} {3}{13}{23} {13}{23}{23} %e A368727 {2}{2}{12} {1}{2}{2}{12} {13}{24}{34} %e A368727 {1}{1}{1}{1} {2}{2}{2}{12} {14}{24}{34} %e A368727 {1}{1}{1}{1}{1} {1}{2}{12}{12} %e A368727 {1}{2}{13}{23} %e A368727 {2}{2}{12}{12} %e A368727 {2}{2}{13}{23} %e A368727 {2}{3}{13}{23} %e A368727 {3}{3}{13}{23} %e A368727 {1}{1}{2}{2}{12} %e A368727 {1}{2}{2}{2}{12} %e A368727 {2}{2}{2}{2}{12} %e A368727 {1}{1}{1}{1}{1}{1} %t A368727 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,___}]; %t A368727 mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]], {s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}]; %t A368727 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List /@ c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A368727 brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]]; %t A368727 Table[Length[Union[brute /@ Select[mpm[n],And@@UnsameQ@@@#&&Max@@Length/@#<=2&&Length[csm[#]]<=1&]]],{n,0,8}] %Y A368727 For edges of any size we have A056156, with loops A007718. %Y A368727 This is the connected case of A339888. %Y A368727 Allowing loops {x,x} gives A368726, Euler transform A320663. %Y A368727 A000085, A100861, A111924 count set partitions into singletons or pairs. %Y A368727 A007716 counts non-isomorphic multiset partitions, into pairs A007717. %Y A368727 A062740 counts connected loop-graphs, unlabeled A054921. %Y A368727 A320732 counts factorizations into primes or semiprimes, strict A339839. %Y A368727 A322661 counts covering loop-graphs, unlabeled A322700. %Y A368727 Cf. A001515, A000666, A122848, A283877, A302545, A320462, A321405, A368598, A368599, A368731. %K A368727 nonn %O A368727 0,3 %A A368727 _Gus Wiseman_, Jan 06 2024