This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368729 #8 Jan 08 2024 14:30:33 %S A368729 1,3,5,7,9,11,13,15,17,21,23,25,27,29,31,33,35,39,41,43,45,47,49,51, %T A368729 55,59,63,65,67,69,73,75,77,79,81,83,85,87,91,93,97,99,101,105,109, %U A368729 115,117,119,121,123,125,127,129,135,137,139,141,143,145,147,149 %N A368729 Numbers whose prime indices are prime or semiprime. MM-numbers of labeled multigraphs with loops and half-loops without isolated (uncovered) nodes. %C A368729 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. %e A368729 The terms together with the corresponding multigraphs begin: %e A368729 1: {} %e A368729 3: {{1}} %e A368729 5: {{2}} %e A368729 7: {{1,1}} %e A368729 9: {{1},{1}} %e A368729 11: {{3}} %e A368729 13: {{1,2}} %e A368729 15: {{1},{2}} %e A368729 17: {{4}} %e A368729 21: {{1},{1,1}} %e A368729 23: {{2,2}} %e A368729 25: {{2},{2}} %e A368729 27: {{1},{1},{1}} %e A368729 29: {{1,3}} %e A368729 31: {{5}} %e A368729 33: {{1},{3}} %e A368729 35: {{2},{1,1}} %e A368729 39: {{1},{1,2}} %e A368729 41: {{6}} %e A368729 43: {{1,4}} %e A368729 45: {{1},{1},{2}} %e A368729 47: {{2,3}} %e A368729 49: {{1,1},{1,1}} %t A368729 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A368729 Select[Range[100],OddQ[#]&&Max@@Length/@prix/@prix[#]<=2&] %Y A368729 In the unlabeled case these multigraphs are counted by A320663. %Y A368729 These are products of primes indexed by elements of A037143 greater than 1. %Y A368729 For just primes we have A076610, squarefree A302590. %Y A368729 For just semiprimes we have A339112, squarefree A340020. %Y A368729 For just half-loops we have A340019. %Y A368729 This is the odd case of A368728, complement A368833. %Y A368729 A000607 counts partitions into primes, with ones allowed A034891. %Y A368729 A001358 lists semiprimes, squarefree A006881. %Y A368729 A006450, A106349, A322551, A368732 list selected primes. %Y A368729 A056239 adds up prime indices, row sums of A112798. %Y A368729 A101048 counts partitions into semiprimes. %Y A368729 Cf. A000040, A000720, A001222, A003963, A005117, A302242, A309356, A320628, A320912, A339113. %K A368729 nonn %O A368729 1,2 %A A368729 _Gus Wiseman_, Jan 07 2024