cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368734 Four-column table read by rows where row n lists the entries of the 2 X 2 matrix M(n) used to form Bird tree and Drib tree rationals.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2, 0, 1, 1, 0, 2, 1, 2, 1, 1, 1, 1, 2, 2, 3, 2, 3, 1, 1, 0, 1, 1, 3, 1, 3, 1, 2, 2, 1, 3, 1, 3, 1, 1, 0, 1, 1, 3, 2, 3, 2, 2, 1, 2, 3, 3, 5, 3, 5, 1, 2, 1, 1, 3, 4, 3, 4, 2, 3, 1, 3, 1, 4, 1, 4, 0, 1, 1, 2, 2, 5
Offset: 1

Views

Author

Philippe Deléham, Jan 04 2024

Keywords

Comments

Row n is x(n), y(n), z(n), t(n) and the matrix is M(n) = [x(n), y(n) ; z(n), t(n)].
Bird tree rationals are formed by multiplication on the right of a row vector [1,1]*M(n) = [A162909(n), A162910(n)].
Drib tree rationals are formed by multiplication on the left of a column vector M(n)*[1;1] = [A162911(n), A162912(n)].
The two matrix rows f(n) = (x(n), y(n)) and g(n) = (z(n), t(n)) start f(1) = (1,0) and g(1) = (0,1) and then satisfy f(2*n) = g(n); g(2*n) = f(2*n+1) = f(n) + g(n); g(2*n+1) = f(n).
If the terms x(n), y(n), z(n) or t(n) are written as an array (left-aligned fashion) with rows of length 2^m, m = 0; 1, 2, 3, ... then each column k is a Fibonacci-type sequence.
For x(n):
1;
0, 1;
1, 1, 1, 2;
1, 2, 0, 1, 2, 3, 1, 3;
2, 3, 1, 3, 1, 1, 1, 2, 3, 5, 1, 4, 3, 4, 2, 5;
...
For y(n):
0;
1, 1;
1, 2, 0, 1;
2, 3, 1, 3, 1, 1, 1, 2;
3, 5, 1, 4, 3, 4, 2, 5, 1, 2, 0, 1, 2, 3, 1, 3;
...
For z(n):
0;
1, 1;
1, 0, 2, 1;
2, 1, 1, 1, 3, 1, 3, 2;
3, 1, 3, 2, 1, 0, 2, 1, 5, 2, 4, 3, 4, 1, 5, 3;
...
For t(n):
1;
1, 0;
2, 1, 1, 1;
3, 1, 3, 2, 1, 0, 2, 1;
5, 2, 4, 3, 4, 1, 5, 3, 2, 1, 1, 1, 3, 1, 3, 2;
...

Examples

			The table begins:
     |    f(n)   |    g(n)
  n  | x(n)| y(n)| z(n)| t(n)
  1  |  1  |  0  |  0  |  1
  2  |  0  |  1  |  1  |  1
  3  |  1  |  1  |  1  |  0
  4  |  1  |  1  |  1  |  2
  5  |  1  |  2  |  0  |  1
  6  |  1  |  0  |  2  |  1
  7  |  2  |  1  |  1  |  1
.
For n >= 1, f(n) = {(1,0); (0,1); (1,1); (1,1); (1,2); (1,0); ...}.
For n >= 1, g(n) = {(0,1); (1,1); (1,0); (1,2); (0,1); (2,1); ...}.
M(38) = [2, 3; 5, 7] ; Det(M(38)) = 2*7-3*5 = -1; 2+5 = 7 = A162909(38); 3+7 = 10 = A162910(38); 2+3 = 5 = A162911(38); 5+7 = 12 = A162912(38).
		

Crossrefs

Formula

x(n) + z(n) = A162909(n).
y(n) + t(n) = A162910(n).
x(n) + y(n) = A162911(n).
z(n) + t(n) = A162912(n).
Det(M(n)) = (-1)^p if 2^p <= n < 2^(p+1).
x(A054429(n)) = t(n).
y(A054429(n)) = z(n).
z(A054429(n)) = y(n).
t(A054429(n)) = x(n).
M(k)*M(n) = M(A122872(n,k)).
M(2^n) = [F(n-1), F(n); F(n), F(n+1)], F(n) = Fibonacci(n) = A000045(n).