A368734 Four-column table read by rows where row n lists the entries of the 2 X 2 matrix M(n) used to form Bird tree and Drib tree rationals.
1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2, 0, 1, 1, 0, 2, 1, 2, 1, 1, 1, 1, 2, 2, 3, 2, 3, 1, 1, 0, 1, 1, 3, 1, 3, 1, 2, 2, 1, 3, 1, 3, 1, 1, 0, 1, 1, 3, 2, 3, 2, 2, 1, 2, 3, 3, 5, 3, 5, 1, 2, 1, 1, 3, 4, 3, 4, 2, 3, 1, 3, 1, 4, 1, 4, 0, 1, 1, 2, 2, 5
Offset: 1
Examples
The table begins: | f(n) | g(n) n | x(n)| y(n)| z(n)| t(n) 1 | 1 | 0 | 0 | 1 2 | 0 | 1 | 1 | 1 3 | 1 | 1 | 1 | 0 4 | 1 | 1 | 1 | 2 5 | 1 | 2 | 0 | 1 6 | 1 | 0 | 2 | 1 7 | 2 | 1 | 1 | 1 . For n >= 1, f(n) = {(1,0); (0,1); (1,1); (1,1); (1,2); (1,0); ...}. For n >= 1, g(n) = {(0,1); (1,1); (1,0); (1,2); (0,1); (2,1); ...}. M(38) = [2, 3; 5, 7] ; Det(M(38)) = 2*7-3*5 = -1; 2+5 = 7 = A162909(38); 3+7 = 10 = A162910(38); 2+3 = 5 = A162911(38); 5+7 = 12 = A162912(38).
Formula
x(n) + z(n) = A162909(n).
y(n) + t(n) = A162910(n).
x(n) + y(n) = A162911(n).
z(n) + t(n) = A162912(n).
Det(M(n)) = (-1)^p if 2^p <= n < 2^(p+1).
x(A054429(n)) = t(n).
y(A054429(n)) = z(n).
z(A054429(n)) = y(n).
t(A054429(n)) = x(n).
M(k)*M(n) = M(A122872(n,k)).
M(2^n) = [F(n-1), F(n); F(n), F(n+1)], F(n) = Fibonacci(n) = A000045(n).
Comments