cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368746 Compositions (ordered partitions) of n into odd parts where the first part must be a maximal part.

This page as a plain text file.
%I A368746 #16 Mar 03 2024 03:58:49
%S A368746 1,1,1,2,2,3,4,6,8,12,18,27,40,61,93,142,217,333,512,789,1217,1881,
%T A368746 2912,4514,7007,10893,16956,26427,41238,64426,100767,157778,247301,
%U A368746 388007,609351,957836,1506928,2372763,3739035,5896462,9305388,14695124,23221657,36718116,58092690,91961034
%N A368746 Compositions (ordered partitions) of n into odd parts where the first part must be a maximal part.
%H A368746 Alois P. Heinz, <a href="/A368746/b368746.txt">Table of n, a(n) for n = 0..4801</a>
%F A368746 G.f.: 1 + Sum_{n>=1} x^(2*n-1)/(1 - Sum_{k=1..n} x^(2*k-1) ).
%e A368746 The a(10) = 18 such compositions are:
%e A368746    1:  [ 1 1 1 1 1 1 1 1 1 1 ]
%e A368746    2:  [ 3 1 1 1 1 1 1 1 ]
%e A368746    3:  [ 3 1 1 1 1 3 ]
%e A368746    4:  [ 3 1 1 1 3 1 ]
%e A368746    5:  [ 3 1 1 3 1 1 ]
%e A368746    6:  [ 3 1 3 1 1 1 ]
%e A368746    7:  [ 3 1 3 3 ]
%e A368746    8:  [ 3 3 1 1 1 1 ]
%e A368746    9:  [ 3 3 1 3 ]
%e A368746   10:  [ 3 3 3 1 ]
%e A368746   11:  [ 5 1 1 1 1 1 ]
%e A368746   12:  [ 5 1 1 3 ]
%e A368746   13:  [ 5 1 3 1 ]
%e A368746   14:  [ 5 3 1 1 ]
%e A368746   15:  [ 5 5 ]
%e A368746   16:  [ 7 1 1 1 ]
%e A368746   17:  [ 7 3 ]
%e A368746   18:  [ 9 1 ]
%p A368746 b:= proc(n, m) option remember; `if`(n=0, 1, `if`(m=0,
%p A368746       add(b(n-2*j+1, 2*j-1), j=1..(n+1)/2), add(
%p A368746       b(n-2*j+1, min(n-2*j+1, m)), j=1..(min(n, m)+1)/2)))
%p A368746     end:
%p A368746 a:= n-> b(n, 0):
%p A368746 seq(a(n), n=0..45);  # _Alois P. Heinz_, Jan 04 2024
%t A368746 b[n_, m_] := b[n, m] = If[n == 0, 1, If[m == 0,
%t A368746     Sum[b[n - 2j + 1, 2j - 1], {j, 1, (n + 1)/2}], Sum[
%t A368746     b[n - 2j + 1, Min[n - 2j + 1, m]], {j, 1, (Min[n, m] + 1)/2}]]];
%t A368746 a[n_] := b[n, 0];
%t A368746 Table[a[n], {n, 0, 45}] (* _Jean-François Alcover_, Mar 03 2024, after _Alois P. Heinz_ *)
%o A368746 (PARI) my(N=44, x='x+O('x^N)); Vec(1+sum(n=1, N, x^(2*n-1)/(1-sum(k=1, n, x^(2*k-1)))))
%Y A368746 Cf. A079500.
%K A368746 nonn
%O A368746 0,4
%A A368746 _Joerg Arndt_, Jan 04 2024