This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368746 #16 Mar 03 2024 03:58:49 %S A368746 1,1,1,2,2,3,4,6,8,12,18,27,40,61,93,142,217,333,512,789,1217,1881, %T A368746 2912,4514,7007,10893,16956,26427,41238,64426,100767,157778,247301, %U A368746 388007,609351,957836,1506928,2372763,3739035,5896462,9305388,14695124,23221657,36718116,58092690,91961034 %N A368746 Compositions (ordered partitions) of n into odd parts where the first part must be a maximal part. %H A368746 Alois P. Heinz, <a href="/A368746/b368746.txt">Table of n, a(n) for n = 0..4801</a> %F A368746 G.f.: 1 + Sum_{n>=1} x^(2*n-1)/(1 - Sum_{k=1..n} x^(2*k-1) ). %e A368746 The a(10) = 18 such compositions are: %e A368746 1: [ 1 1 1 1 1 1 1 1 1 1 ] %e A368746 2: [ 3 1 1 1 1 1 1 1 ] %e A368746 3: [ 3 1 1 1 1 3 ] %e A368746 4: [ 3 1 1 1 3 1 ] %e A368746 5: [ 3 1 1 3 1 1 ] %e A368746 6: [ 3 1 3 1 1 1 ] %e A368746 7: [ 3 1 3 3 ] %e A368746 8: [ 3 3 1 1 1 1 ] %e A368746 9: [ 3 3 1 3 ] %e A368746 10: [ 3 3 3 1 ] %e A368746 11: [ 5 1 1 1 1 1 ] %e A368746 12: [ 5 1 1 3 ] %e A368746 13: [ 5 1 3 1 ] %e A368746 14: [ 5 3 1 1 ] %e A368746 15: [ 5 5 ] %e A368746 16: [ 7 1 1 1 ] %e A368746 17: [ 7 3 ] %e A368746 18: [ 9 1 ] %p A368746 b:= proc(n, m) option remember; `if`(n=0, 1, `if`(m=0, %p A368746 add(b(n-2*j+1, 2*j-1), j=1..(n+1)/2), add( %p A368746 b(n-2*j+1, min(n-2*j+1, m)), j=1..(min(n, m)+1)/2))) %p A368746 end: %p A368746 a:= n-> b(n, 0): %p A368746 seq(a(n), n=0..45); # _Alois P. Heinz_, Jan 04 2024 %t A368746 b[n_, m_] := b[n, m] = If[n == 0, 1, If[m == 0, %t A368746 Sum[b[n - 2j + 1, 2j - 1], {j, 1, (n + 1)/2}], Sum[ %t A368746 b[n - 2j + 1, Min[n - 2j + 1, m]], {j, 1, (Min[n, m] + 1)/2}]]]; %t A368746 a[n_] := b[n, 0]; %t A368746 Table[a[n], {n, 0, 45}] (* _Jean-François Alcover_, Mar 03 2024, after _Alois P. Heinz_ *) %o A368746 (PARI) my(N=44, x='x+O('x^N)); Vec(1+sum(n=1, N, x^(2*n-1)/(1-sum(k=1, n, x^(2*k-1))))) %Y A368746 Cf. A079500. %K A368746 nonn %O A368746 0,4 %A A368746 _Joerg Arndt_, Jan 04 2024