A368751 Irregular triangle read by rows: T(n,k) is the number of co-atoms contained in the k-th balanced string of left/right parentheses of length 2*n, where strings within a row are in reverse lexicographical order.
1, 0, 1, 2, 1, 1, 0, 0, 1, 1, 2, 1, 2, 3, 2, 2, 1, 1, 1, 2, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 3, 2, 2, 1, 1, 2, 2, 3, 2, 3, 4, 3, 3, 2, 2, 2, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 2, 1, 1, 1, 2, 1, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0
Offset: 1
Examples
Triangle begins: [1] 1 0; [2] 1 2 1 1 0 0; [3] 1 1 2 1 2 3 2 2 1 1 1 2 1 1 0 0 1 0 0 0; ... The strings corresponding to row 2, in reverse lexicographical order, are: "))((" (1 co-atom), ")()(" (2 co-atoms), ")(()" (1 co-atom), "())(" (1 co-atom), "()()" (0 co-atoms) and "(())" (0 co-atoms).
References
- Donald E. Knuth, The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms, Part 1, Addison-Wesley, 2011, Section 7.2.1.6, exercise 60, p. 478.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..17576 (rows 1..8 of the triangle, flattened).
Crossrefs
Programs
-
Mathematica
strings[n_]:=Permutations[PadLeft[PadLeft[{},n,1],2n,-1]]; Array[Map[SequenceCount[Accumulate[#],{-1,0}]&,strings[#]]&,5]
Comments