This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A368752 #20 Jan 09 2024 16:56:55 %S A368752 1,1,1,2,2,2,2,1,1,1,2,2,2,3,3,3,3,2,2,3,3,3,3,2,2,2,1,1,1,1,1,2,2,1, %T A368752 1,2,2,2,3,3,3,3,2,2,2,3,3,3,4,4,4,4,3,3,4,4,4,4,3,3,3,2,2,2,2,3,3,3, %U A368752 4,4,4,4,3,3,4,4,4,4,3,3,3,2,2,2,3,3,3,3,2,2,2,1,1,2,2,1,1,1 %N A368752 Irregular triangle read by rows: T(n,k) is the number of atoms + co-atoms contained in the k-th balanced string of left/right parentheses of length 2*n, where strings within a row are in reverse lexicographical order. %C A368752 See A368750 for the definition of balanced strings and atoms/co-atoms. %D A368752 Donald E. Knuth, The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms, Part 1, Addison-Wesley, 2011, Section 7.2.1.6, exercise 60, p. 478. %H A368752 Paolo Xausa, <a href="/A368752/b368752.txt">Table of n, a(n) for n = 1..17576</a> (rows 1..8 of the triangle, flattened). %F A368752 T(n,k) = A368750(n,k) + A368751(n,k). %e A368752 Triangle begins: %e A368752 [1] 1 1; %e A368752 [2] 1 2 2 2 2 1; %e A368752 [3] 1 1 2 2 2 3 3 3 3 2 2 3 3 3 3 2 2 2 1 1; %e A368752 ... %e A368752 The strings corresponding to row 2, in reverse lexicographical order, are: %e A368752 "))((" (0 atoms, 1 co-atom), %e A368752 ")()(" (2 co-atoms), %e A368752 ")(()" (1 co-atom, 1 atom), %e A368752 "())(" (1 atom, 1 co-atom), %e A368752 "()()" (2 atoms) and %e A368752 "(())" (1 atom). %t A368752 strings[n_]:=Permutations[PadLeft[PadLeft[{},n,1],2n,-1]]; %t A368752 Array[Map[Count[Accumulate[#],0]&,strings[#]]&,5] %Y A368752 Cf. A000984 (row lengths), A068551 (row sums), A362030 and A368804 (binary words). %Y A368752 Cf. A368750 (atoms), A368751 (co-atoms), A368753 (defects). %K A368752 nonn,tabf %O A368752 1,4 %A A368752 _Paolo Xausa_, Jan 05 2024