cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368760 a(n) = n! * (1 + Sum_{k=0..n} k^3 / k!).

This page as a plain text file.
%I A368760 #9 Jan 05 2024 07:52:12
%S A368760 1,2,12,63,316,1705,10446,73465,588232,5294817,52949170,582442201,
%T A368760 6989308140,90861008017,1272054114982,19080811728105,305292987653776,
%U A368760 5189980790119105,93419654222149722,1774973430220851577,35499468604417039540,745488840692757839601
%N A368760 a(n) = n! * (1 + Sum_{k=0..n} k^3 / k!).
%H A368760 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>.
%H A368760 Wikipedia, <a href="https://en.wikipedia.org/wiki/Touchard_polynomials">Touchard polynomials</a>.
%F A368760 a(0) = 1; a(n) = n*a(n-1) + n^3.
%F A368760 a(n) = n! + A337001(n).
%F A368760 E.g.f.: (1 + B_3(x) * exp(x)) / (1-x), where B_n(x) = Bell polynomials.
%o A368760 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1+sum(k=0, 3, stirling(3, k, 2)*x^k)*exp(x))/(1-x)))
%Y A368760 Column k=3 of A368759.
%Y A368760 Cf. A337001.
%K A368760 nonn
%O A368760 0,2
%A A368760 _Seiichi Manyama_, Jan 04 2024